
RESEARCH ARTICLE

Xiaofeng Liu Æ Joseph Katz

Instantaneous pressure and material acceleration measurements
using a four-exposure PIV system

Received: 19 November 2005 / Revised: 29 March 2006 / Accepted: 10 April 2006 / Published online: 3 May 2006
� Springer-Verlag 2006

Abstract This paper describes a non-intrusive technique
for measuring the instantaneous spatial pressure distri-
bution over a sample area in a flow field. A four-expo-
sure PIV system is used for measuring the distribution of
material acceleration by comparing the velocity of the
same group of particles at different times and then
integrating it to obtain the pressure distribution.
Exposing both cameras to the same particle field at the
same time and cross-correlating the images enables
precision matching of the two fields of view. Application
of local image deformation correction to velocity vectors
measured by the two cameras reduces the error due to
relative misalignment and image distortion to about
0.01 pixels in synthetic images. An omni-directional
virtual boundary integration scheme is introduced to
integrate the acceleration while minimizing the effect of
the local random errors in acceleration. Further
improvements are achieved by iterations to correct the
pressure along the boundary. Typically 3–5 iterations
are sufficient for reducing the incremental mean pressure
change in each iteration to less than 0.1% of the dy-
namic pressure. Validation tests of the principles of the
technique using synthetic images of rotating and stag-
nation point flows show that the standard deviation of
the measured pressure from the exact value is about
1.0%. This system is used to measure the instantaneous
pressure and acceleration distributions of a 2D cavity
turbulent flow field and sample results are presented.

1 Introduction

Knowledge of the pressure distribution in a flow field is
a primary concern in many engineering applications.

Pressure is the dominant contributor to the lift and
form drag for a body moving in fluid. Wall pressure
fluctuations are responsible for excitation of structures,
leading to flow-induced vibrations and noise (Blake
1986). In turbulence research, the velocity–pressure
gradient tensor in the Reynolds stress transport equa-
tion, which is typically decomposed into the pressure
diffusion and the pressure-strain tensors, is a key
unresolved parameter in the modeling of turbulence
(Pope 2000; Girimaji 2000). However, due to lack of
experimental techniques for simultaneous measure-
ments of pressure and velocity gradients simulta-
neously, the velocity–pressure gradient tensor has never
been measured directly. Available experimental data on
pressure diffusion has been inferred experimentally in
simple geometries from a balance of the other terms in
the turbulence kinetic energy transport equations
(Gutmark and Wygnanski 1976; Wygnanski and Fie-
dler 1969; Liu and Thomas 2004). The only source of
reliable information is direct numerical simulation
(DNS) data, which are also limited to simple geome-
tries and low Reynolds numbers.

Pressure is also of fundamental importance for
understanding and modeling cavitation. It is well
established that cavitation inception occurs when small
bubbles or nuclei in liquid grow explosively due to
exposure to low pressure (Brennen 1995; Arndt 2002).
However, due to lack of experimental capability, we
have very little data on the instantaneous pressure dis-
tributions away from boundaries, e.g., in turbulent free
shear layers and within tip vortices. To date the only
available techniques for pressure measurement away
from boundaries are based on Pitot-tube type of probes,
such as five hole and seven hole probes. However, these
probes are intrusive, not suitable for dynamic measure-
ment due to a limited frequency response, and can only
perform point measurements. Although limited instan-
taneous pressure measurements were performed in the
past using microscopic bubbles as pressure sensors (Ooi
and Acosta 1983; O’Hern 1990; Ran and Katz 1994),
they were not performed simultaneously with velocity
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measurements and, more importantly, provided very
limited data points. To date even with the detailed
velocity measurements provided by PIV, we still do not
have direct experimental data on the local instantaneous
pressure causing cavitation inception in high Reynolds
number flows. In flows involving large coherent struc-
tures, we have to infer the pressure distribution using
assumed simplified relationships between velocity and
pressure, e.g., a Rankine vortex, which at best provides
some qualitative insight.

This lack of adequate capability to determine the
instantaneous spatial pressure distribution and the need
for experimental data provide the motivation for the
present on-going effort. We have developed a system
that is capable of measuring the instantaneous pressure
distribution in a non-intrusive manner based on parti-
cle image velocimetry (PIV) technology (Liu and Katz
2003, 2004). This system utilizes four-exposure PIV to
measure the distribution of material acceleration and
then integrates it to obtain the pressure. This approach
provides the distributions of instantaneous pressure,
material acceleration and velocity distributions simul-
taneously.

Acceleration has been studied both numerically and
experimentally before. The objectives of most of pre-
vious works have been either to provide data for
Lagrangian stochastic turbulence models (Yeung 2001,
2002; Vedula and Yeung 1999; Voth et al. 1998; La
Porta et al. 2001; Ott and Mann 2000) or to develop
techniques for either Lagrangian (material) or Eulerian
(local) acceleration measurements (Jakobsen et al.
1997; Dong et al. 2001; Christensen and Adrian 2002;
Jensen et al. 2001, 2003; Jensen and Pedersen 2004;
Chang and Liu 1998; Chang et al. 1999; Sridhar and
Katz 1995). Voth et al. (1998) and La Porta et al.
(2001) tracked and calculated the acceleration of indi-
vidual particles. Dong et al. (2001) obtained 2D Eule-
rian acceleration distributions using one CCD camera
by combining cross-correlations and auto-correlations
on two successive, doubly exposed frames. The two
instantaneous velocity fields, each obtained from the
auto-correlation analysis, were used for computing the
acceleration. Chang et al. (1999) proposed a triple-
exposure particle tracking method using one camera
recording two frames with the first frame containing
two exposures and the second frame a single exposure.
Particle tracking enables the measurement of the
material acceleration. They used this method to mea-
sure the acceleration with breaking waves (Chang and
Liu 1998). Sridhar and Katz (1995) used triple-expo-
sure images to simultaneously measure the velocity and
material acceleration of microscopic bubbles and the
fluid surrounding them.

As for the measurement techniques involving two or
more cameras, Ott and Mann (2000) used four syn-
chronized CCD cameras to track the trajectories of seed
particle pairs and investigated their diffusion character-
istics in a turbulent flow generated by two oscillating
grids. Jakobsen et al. (1997) utilized a specially designed

four-CCD camera system to obtain the acceleration field
near the wall of a surface wave flume based on PIV
technology. They validated their acceleration measure-
ment by integrating the averaged acceleration and then
comparing it to the mean pressure difference between
two wall pressure taps. Christensen and Adrian (2002)
measured the instantaneous Eulerian acceleration field
of a boundary layer flow using two CCD cameras with
cross-polarized laser beams as light sources. They cal-
culated the so-called velocity bulk-convective-derivative
field and concluded that the dominant vortical structures
remained almost frozen in time. Jensen et al. (2001)
measured the Eulerian acceleration in periodic waves
using two cameras placed side-by-side to view the same
region of the flow. With the same extended PIV setup,
Jensen et al. (2003) further proposed a pseudo-tracing
technique to measure the material acceleration of wave
run-up over a steep beach by tracing imaginary fluid
particles between two consecutive velocity fields. In a
recent paper on optimization of acceleration measure-
ments, Jensen and Pedersen (2004) compared two
methods for extracting material accelerations based on
two camera PIV measurements. They concluded that the
linear regression of the velocity gradients for the con-
vective acceleration term estimate is more sensitive to
random errors in velocity fields while in contrast, the
pseudo-tracing approach is more favorable for the wave
flow.

The practice of integrating Navier–Stokes equation
to obtain pressure along control surfaces can also be
found in literature. For example, to obtain the instan-
taneous force on an oscillating cylinder, Unal et al.
(1997) implemented a momentum-based method which
integrates the instantaneous velocity measured by PIV
within the control volume and the pressure along control
surfaces.

In this paper, we extend the previous efforts, first by
measuring the instantaneous distribution of material
acceleration for a high Reynolds number flow and then
by integrating it over the entire flow field to measure the
pressure distribution. The principles of the technique are
described in the next section, followed in Sect. 3 by a
demonstration of its validity using synthetic images. The
experimental setup is presented in Sect. 4. During
implementation, we have encountered a series of prob-
lems that affect the uncertainty in the measurements. In
Sects. 5 and 6 we introduce solutions to these problems,
including substantially improved techniques for match-
ing images recorded by different cameras and for inte-
grating the material acceleration. Sample results of
pressure distribution measurements in a cavity turbulent
flow are shown in Sect. 7.

2 Measurement of pressure distribution by integrating
the material acceleration

Based on the Navier–Stokes equation, the pressure
gradient can be expressed as
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rp ¼ �q
D~U
Dt
� mr2~U

 !
: ð1Þ

Thus, if both the material acceleration, D ~U /Dt, and the
viscous terms, �mr2~U ; can be measured directly, the
pressure p can be found by integrating Eq. 1. In a high
Reynolds number flow field located away from bound-
aries, the material acceleration is dominant and the
viscous term is negligible. As shown later in this paper,
our experimental data for a cavity shear flow indeed
confirms that the material acceleration is the dominant
term. However, one should be careful to evaluate the
contribution of the viscous term and avoid integrating
along paths that are particularly affected by viscosity,
e.g., along a boundary layer. Neglecting the viscous
term, one has to measure the material acceleration and
integrate it to determine the pressure.

The present technique for measuring the material
acceleration is similar to the ‘‘pseudo-tracing’’ technique
proposed by Jensen et al. (2003). To calculate the
material acceleration, one has to compare the velocity of
the same group of particles at two different times. We
use two ‘‘cross-correlation’’ cameras to record four
exposures of the particle traces within the sample area.
The corresponding timings of the exposures are denoted
as t1, t2, t3 and t4, and there is an equal time interval, dt,
between them. Camera 1 records images 1 and 3 and
provides the first velocity distribution, ~U13; at t=t2.
Camera 2 records images 2 and 4 and generates the
second velocity map, ~U24; at t=t3. A particle group lo-
cated at ~xa at t=t2 and has a velocity ~U13ð~xa; t2Þ is lo-
cated at~xa þ ~Uadt at t=t3, where

~Uað~xa þ ~Uadt=2; t2 þ dt=2Þ

¼ 1

2
~U13ð~xa; t2Þ þ ~U24ð~xa þ ~Uadt; t2 þ dtÞ
� � ð2Þ

is the averaged Lagrangian velocity of the same group of
particles between t2 and t2+dt. This implicit expression
requires (typically two) iterations during data analysis.
The in-plane projection of the material acceleration at
~xa þ ~Uadt=2 and t=t2+dt/2 can then be estimated as

D~U
Dt

�����~xa þ ~Uadt=2
t2 þ dt=2

�
~U24ð~xa þ ~Uadt; t2 þ dtÞ � ~U13ð~xa; t2Þ

dt
:

ð3Þ

The velocity distribution at the same time can be esti-
mated by averaging the two vector maps.

In our analysis, the velocity field ~U13 and ~U24 are
obtained using an in-house developed PIV code. Its
widely used version is described in Roth (1998) and
Roth and Katz (2001), and a recent, substantially more
accurate technique featuring correlation mapping
method (abbreviated as CMM) is presented in Chen and
Katz (2005). The latter eliminates the peak-locking er-
ror, thus achieving greater accuracy in measurements of

velocity gradients. This method, including the compen-
sation of particle image distortion (Huang et al. 1993), is
used for calculating the velocity in the present study.

For these procedures to work, the particles must re-
main within the laser sheet as the four exposures are
recorded. Staggering the frames, i.e., calculating the first
velocity field using exposures one and three ð~U13Þ and
the second velocity using exposures two and four ð~U24Þ
improves the chances that we indeed follow the same
group of particles. In the present application, we choose
the same time interval between exposures. However, the
procedure would also work with varying intervals. The
choice of dt must match the time scales of the flow and,
within this constraint, increasing dt reduces the uncer-
tainty of the acceleration measurement, consistent with
Jensen and Pedersen (2004).

Integrating the planar projection of the material
acceleration from a reference point with known pressure
provides the pressure distribution pð~x; t2 þ dt=2Þ; as long
as the viscous terms are small. At least two of the three
components of the viscous term can also be evaluated,
mostly to ensure that they are small. To minimize the
effect of local acceleration errors, pressure is calculated
using averaged, shortest path, virtual boundary, omni-
directional integration over the entire flow field, as dis-
cussed in detail in Sect. 6.

In the following section we implement this procedure
to calculate the pressure distribution in synthetic flow
fields and compare the computed and previously known
pressure distributions. Note that if 3D data are available,
e.g., from holographic PIV, one can calculate the local
unsteady and convective terms of the acceleration at the
same location. Using another approach, if the 3D
velocity gradients are available, the instantaneous pres-
sure distribution may be obtained by solving the Poisson
equation, r2p ¼ �qð@ui=@ujÞð@uj=@uiÞ; with appropri-
ately prescribed boundary conditions. However, this
approach is not suitable for 2D PIV-based data, since the
third component of the velocity gradient is not available.
One can also derive the measured projection of material
acceleration to obtain a 2D Poisson equation, i.e.,

@2p
@x2
þ @

2p
@y2
¼ �q

@

@x
Du
Dt

� �
þ @

@y
Dv
Dt

� �� �
:

However, this approach involves second derivatives of
the measured velocity, and the resulting errors do not
offer real advantage over direct spatial integration of the
material acceleration. In a laminar flow, or to obtain the
time-averaged pressure distribution for planar turbulent
flows (2D in the mean), one can also solve the Poisson
equation based on 2D PIV-based data as demonstrated
by Gurka et al. (1999).

3 Proof of concept tests using synthetic images

To validate the principles of the pressure measurement
technique, we use synthetic images of solid body rota-
tion and stagnation point flows. The simulated seed
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particles are distributed homogeneously in a 2,048 ·
2,048 pixels image using a random number generator
available in Matlab. The particle concentration is set to
maintain an average of 25 particles per interrogation
window of 32 · 32 pixels. The particle size has a
Gaussian distribution, with a mean diameter of
2.4 pixels and a standard deviation of 0.8 pixels. The
intensity of the particle image is based on the local
integration result of a Gaussian intensity distribution
with a peak grayscale of 240 to reflect the CCD sensor
integration effect. Particle overlapping is avoided by
identifying the occupied and unoccupied areas during
the particle allocation process. Based on the first syn-
thetic image, the subsequent three planes are generated
by displacing the particles according to the local theo-
retical velocity, using the analytical expressions for the
velocity fields. A bilinear interpolation is used for dis-
placing the particles. The selected rotation rate of the
synthetic solid body rotation is x=0.0625 s�1, and the
constant strain rate for the stagnation point flow is
S=0.025 s�1. The time interval between exposures is
dt=0.5 s.

Figure 1a, b shows the material acceleration magni-
tude and the pressure distribution, respectively, for the
solid body rotation. The irregularities in Fig. 1a are
caused by errors that can be traced to the inherent
uncertainty of the PIV analysis and by truncation errors.
The irregularities disappear in the pressure distribution
contours due to the omni-directional integration that
acts as a low-pass filter. The measured radial pressure
distribution is compared to the theoretical values in
Fig. 2. The degree of agreement is self-evident. The
difference between the measured and the theoretical
pressures has a standard deviation of 1.05%. Note that
70% of this error is caused by positioning the velocity
vectors in the middle of the interrogation window of the
first exposure, i.e., without accounting for the displace-
ment. For the synthetic stagnation point flow (data not
shown), the standard deviation is 1.03%.

In examining contributors to overall uncertainty, we
have isolated the effects of each step using exact data.
For example, to examine the effect of integration, we
have used the exact values of acceleration and deter-
mined the error in pressure. The analysis indicates that
the uncertainty is dominated by errors in velocity mea-
surements. The contribution of any other steps in the
procedure is at least an order of magnitude smaller. To
quantify the effects of error in velocity, we have imposed
random errors with a standard deviation of 0.5, 0.3 and
0.1 pixels to the exact velocities of the rotational flow.
The corresponding standard deviations from the exact
pressures are 2.9, 2.2 and 1.4% when normalized by the
local pressure. This relative error is dominated by values
near the center of the simulated vortex, where the local
pressure is low. If the error is normalized by the differ-
ence between the maximum and minimum pressures, the
corresponding standard deviations of errors are 0.4, 0.4
and 0.2%, respectively. However, these low values are
affected by the high range of displacement in the simu-
lated vortex, 83 pixels at the outer perimeter and almost
zero near the center. Experimental data with lower dis-
placement range between exposures will have higher
errors. This error analysis is only preliminary. We will
follow with a detailed study based on DNS data.

4 Experimental and optical setup

The pressure measurement technique is applied to a
cavity shear flow in a small water tunnel, which is
described in Gopalan and Katz (2000). Since the pri-
mary objective of this paper is to introduce a new
technique, we do not focus on the physics of this flow.
The reader can refer to Tang and Rockwell (1983), Lin
and Rockwell (2001) and Rockwell and Knisely (1979)
for background on the studies of shear layers above
cavities. The optical setup together with the test facility
and model is sketched in Fig. 3. The 38.1 mm long,

(a) (b)

Fig. 1 a Magnitude of the
material acceleration and b
spatial pressure distribution
integrated from the material
acceleration for the synthetic
rotational flow
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50.8 mm wide and 30.0 mm deep 2D cavity is installed
in the 50.8 · 63.5 mm2 test section. As shown, the test
model has a contraction ramp leading to the cavity and a
diffusing ramp downstream of the cavity. A 13 mm long
region with tripping grooves having a notch depth of
0.46 mm and opening of 1.00 mm is machined at the
beginning of the contraction ramp in order to trip the
boundary layer.

To record the four exposures we use two 2K · 2K
cross-correlation digital cameras with interline image
transfer (Kodak ES4.0). The light sources are two dual-
head Nd:Yag lasers (New Wave MiniLase 15 and III-15,

15 mJ/pulse at 532 nm, pulse width 5–7 ns), with flashes
1 and 3 generated by laser No. 1 and flashes 2 and 4 by
laser No. 2. The time interval dt between the laser flashes
is 25 ls. A half-wave plate is used for rotating the
polarization of laser No. 1 before mixing the beams and
expanding them to sheets. Consequently, the polariza-
tion direction of the light in pulses 1 and 3 is perpen-
dicular to that of pulses 2 and 4. As discussed in
Christensen and Adrian (2002), most of the light re-
flected from tracer particles (hollow, 8–12 lm, glass
spheres with specific gravity of 1.05–1.15) located within
the laser sheet maintains its polarization angle. Thus, by
placing a polarizing beam splitter (cube) in front of the
cameras, we can separate images 1 and 3 from images 2
and 4 and direct them onto their respective cameras.

To maximize the spatial resolution of the acceleration
measurements, we use progressive grid refinement, cul-
minating in 16 · 16 pixels interrogation window with
50% overlap between windows. The corresponding
length scales for a 50.8 · 50.8 mm2 field of view are an
interrogation window of 0.4 · 0.4 mm2 and vector
spacing of 0.2 mm. Thus, the present spatial resolution
extends well into the turbulence dissipation scales.
However, when the vector spacing and the interrogation
window size are much larger than the dissipation scales,
one must examine the effect of the sub-grid scale stresses
on the momentum balance since they may become sig-
nificant. At the present resolution they are not. In this
paper, the pressure distributions are presented in terms
of pressure coefficient, Cp ¼ ðp � prefÞ=ðð1=2ÞqU2

e Þ;
where p is the measured pressure, pref the reference
pressure and Ue the external free stream velocity above
the cavity.

5 Vector alignment based on local deformation
correction

It is essential to match the fields of view of the two
cameras, requiring an elaborate alignment and calibra-
tion process. As a result, camera 1 is installed on a three-
axis translation stage, while camera 2 is installed on a tilt
and rotation stage (see Fig. 3). A target with grid (Ed-
mund Industrial Optics, model NT46–250), illuminated
using incandescent light source, is placed in the test
section. The plane of the target is aligned with the laser
sheet to the best of our ability, considering that the sheet
has a finite depth. The two images of this target are
compared, and the differences between them are mini-
mized by iteratively adjusting the focus of the lens and
the settings of the mounting stages.

However, mechanical alignment is insufficient. For
example, for the 25.4 · 25.4 mm2 field of view of a
2K · 2K camera with dt=25 ls, a 0.05 mm misalign-
ment in the lateral direction in the target plane results in
a displacement of 4 pixels on the image plane, i.e., an
increase of relative velocity by 1.0 m/s, which corre-
sponds to an acceleration error of 40,000 m/s2, an
unacceptable level. To overcome this problem, similar to
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Fig. 2 Radial pressure distribution for the synthetic rotational flow

Fig. 3 Optical setup
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Jensen et al. (2001), we also compare images of a densely
seeded flow which are acquired at the same time by
triggering both lasers simultaneously. The images are
analyzed like a typical PIV pair to determine the spatial
distribution of relative displacement between the two
images. Based on the information about the relative
displacement, we have tried several methods for
matching the two fields of view including: (a) decompo-
sition of relative displacements into relative translation,
rotation and magnification (Liu and Katz 2003, 2004);
(b) global mapping of distortion using polynomials of
different orders; and (c) local deformation correction, as
will be described shortly. In spite of considerable effort,
the first two approaches have failed to match the local
deformations at levels below 0.1 pixel. Due to the sen-
sitivity of pressure measurements to camera misalign-
ment, a bias error in velocity on the order of 0.1–
0.5 pixels leads to substantial errors in pressure. The
local deformation correction method has solved our
problem by providing the most accurate matching, so it
is described in detail below.

As illustrated in Fig. 4, suppose O(x0, y0) and P(x,y)

are the starting and ending points of a vector OP
�!

on

camera 1, where OP
�! ¼ ðx� x0; y � y0Þ ¼ ðuc1; vc1Þ ¼ ~VC1:

Correspondingly, the same vector on camera 2 is denoted

as O0P 0
��!

¼ ðx0 � x00; y
0 � y00Þ ¼ ðuc2; vc2Þ ¼ ~VC2; with O¢

(x¢0, y¢0) and P¢ (x¢, y¢) being the starting and ending
points, respectively. Here, u and v represent velocity
components, and c1 and c2 refer to a specific camera. The
relative displacement betweenO(x0, y0) andO¢ (x¢0, y¢0) is
~D0 ¼ ðDx0;Dy0Þ and between P(x,y) and P¢ (x¢, y¢) is
~D ¼ ðDx;DyÞ:With Taylor expansion of Dx, one obtains

x0 � x00 ¼ ðxþ DxÞ � ðx0 þ Dx0Þ

¼ ðx� x0Þ þ ðx� x0Þ
@Dx

@x

����
x0;y0

þ ðy � y0Þ
@Dx

@y

����
x0;y0

þ 1

2

�
ðx� x0Þ2

@2Dx

@x2

����
x0;y0

þ2ðx� x0Þðy � y0Þ
@2Dx

@x@y

����
x0;y0

þ ðy � y0Þ2
@2Dx

@y2

����
x0 ;y0

�
þH:O:T:

;

ð4Þ

i.e.,

uc2 ¼ uc1 þ uc1
@Dx

@x

����
x0;y0

þvc1
@Dx

@y

����
x0;y0

þ 1

2
u2

c1

@2Dx

@x2

����
x0;y0

þ2uc1vc1
@2Dx

@x@y

����
x0;y0

þv2c1
@2Dx

@y2

����
x0 ;y0

" #

þH:O:T:

ð5Þ

Similarly, we get

vc2 ¼ vc1 þ uc1
@Dy

@x

����
x0;y0

þvc1
@Dy

@y

����
x0;y0

þ 1

2
u2

c1

@2Dy

@x2

����
x0;y0

þ2uc1vc1
@2Dy

@x@y

����
x0;y0

þv2c1
@2Dy

@y2

����
x0 ;y0

" #

þH:O:T:

ð6Þ

The distribution of ~Dðx; yÞ is available from the cross-
correlation of images recorded by both cameras at the
same time. Using Eqs. 5 and 6, the camera 1 velocity
vector components can be aligned to those of camera 2.
The corresponding camera 2 velocity components at the
same physical location can be obtained using interpo-
lation at places indicated by ~Dðx; yÞ: The resulting grid
on camera 2 is slightly irregular. Following these cor-
rections, the resulting vector maps contain mostly errors
due to lens-induced distortion of one camera. However,
calibrations using the target show that this distortion is
less than 0.003 pixel per pixel, much smaller than the
typical accuracy of the PIV cross-correlation analysis
(on the order of 0.1 pixel). Consequently, the effect of
image distortion imbedded in the velocity is not a pri-
mary concern.

To gauge the accuracy of the above three velocity
vector alignment methods, we distort a pair of synthetic
images of the solid body rotation described in Sect. 3
using two sets of spatial distortion function, which are
based on measured (real) calibration images of a grid
target, as shown in Fig. 5. The distortions extend to
3 pixels at the perimeter of the images, and their spatial

Fig. 4 Schematic illustration of two velocity vectors, which are
supposed to be identical, but are different due to mismatches in
location, magnification and deformation in the images recorded by
camera 1 and camera 2
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distributions in the two images differ. The distorted
velocity vectors of camera 1 are then aligned to the
distorted velocity of camera 2 using the aforementioned
procedures. The statistics of the differences in velocity
(du and dv) after the matching procedures are presented
in Table 1. Decomposition of the relative displacement
introduces a large and unacceptable level of error. The
global mapping method and the local deformation cor-
rection based on standard PIV procedures (Roth 1998;
Roth and Katz 2001) have standard deviation of less
than 0.1 pixel. As illustrated later, the resulting bias was
unacceptable for pressure measurements. The first and
second order local deformation correction, used together
with the PIV analysis code based on the CMM (Chen
and Katz 2005), gives the most accurate alignment re-
sult. A standard deviation of 0.01 pixels (six times less
than the other methods already, at least for synthetic
images) reduces the bias associated with image matching
to an acceptable level. Furthermore, the local correc-
tions minimize bias errors that occur when a continuous
function is fitted to discrete data.

To illustrate the impact of the new procedures on the
pressure distributions, Fig. 6 compares the instanta-
neous pressure distributions of the cavity shear layer
calculated using the same velocity data, but different
methods for matching the two fields of view. The dis-
tribution calculated using the sixth order polynomial fit

(left side), with its bias error not exceeding 0.2 pixels,
clearly displays unrealistic pressure peaks above the
shear layer, especially along the upper right side of the
distribution, where the flow is quite uniform. The high
negative peaks along the right cavity wall below the
shear layer is also unrealistic, considering the magni-
tudes of velocity there. This bias disappears when we use
second order local deformation correction.

6 Pressure integration algorithm

With the material acceleration measured at discrete no-
dal points in a planar flow field, the pressure can be
reconstructed by solving a least square problem. For a
sample grid, at each nodal point there are two known
components of the material acceleration and one un-
known variable, the pressure. These variables are related
to each other via discrete differential equations, which
form an over-determined matrix equation. The three
primary ways to solve this matrix equation are: matrix
iteration (Southwell 1980), direct matrix inversion
(Herrmann 1980) and singular value decomposition
(Press et al. 2002). However, the matrix iteration meth-
od results are sensitive to the initial value setting, and
use of a relaxation factor requires experience. The direct
matrix inversion and singular value decomposition

x (pixel) x (pixel) 

y (pixel) Unit: pixel Unit: pixely (pixel)

(a) (b) 

Fig. 5 Iso-contours of
magnitude of relative
displacement between a grid
target and the two cameras: a
camera 1; b camera 2

Table 1 Comparison of accuracy of velocity vector alignment methods based on distorted synthetic images

Standard deviation
of du (pixel)

Standard deviation
of dv (pixel)

Mean du
(pixel)

Mean dv
(pixel)

Decomposition of camera image relative displacement 0.169 0.206 �0.153 0.229
Sixth order polynomial global mapping 0.078 0.078 �0.00076 0.00111
First order local deformation correction using the code
of Roth and Katz (2001)

0.0613 0.0682 �0.00046 0.00099

Second order local deformation correction using the code
of Roth and Katz (2001)

0.0625 0.0688 �0.0016 �0.0005

First order local deformation correction using the code
of Chen and Katz (2005)

0.0112 0.0109 0.00066 �0.00048

Second order local deformation correction using the code
of Chen and Katz (2005)

0.0107 0.0105 �0.00029 �0.00017
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approaches must involve the full matrix during computa-
tion. For a grid with 220 · 220 nodes, which is typical for
PIV analysis using 2K · 2K cameras, the largest
storage requirement of a full matrix when solving the

matrix equation is 18 GB, which is impractical at the
current level of computer technology. To bypass these
limitations, we developed a simpler algorithm for direct
integration.

Fig. 6 A comparison between
pressure distributions
calculated using the same data,
but different methods for
matching the two fields of view.
a Matching by polynomial fit; b
matching by second order local
deformation correction using
the CMM PIV method. The
sample area extends from the
leading edge (0,0) to the trailing
edge (38,0) of the cavity

(a) (b)

(c)

Fig. 7 Pressure gradient
integration algorithms: a
averaged, shortest path, omni-
directional integration; b omni-
directional paths originated and
ending at boundaries; c virtual
boundary omni-directional
integration algorithm
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Since pressure is a scalar field, the integration of
pressure gradients must be independent of the integra-
tion path. To minimize the effect of the error in the
acceleration field, we first implemented a method fea-
turing averaged, shortest path, omni-directional integra-
tion over the entire flow field. An illustration of the
integration paths used initially is presented in Fig. 7a.
Starting from the top left corner, we first integrate the
acceleration along the boundary. To determine the
pressure at a certain internal point, we then integrate the
acceleration along nearly straight paths (shortest paths)
from each of the boundary point to the internal node
and then average all the integration results. For an m · n
grid, the number of boundary nodes is 2 (m+n). Thus,
the total number of integration paths needed for calcu-
lating the pressure over the entire domain is 2(m+n)mn.
For m=n=250, the number of paths is 62.5 · 106. Such
a large number is prohibitively expensive, especially
considering that one may wish to perform thousands of
measurements to obtain converged statistics on the
pressure field and pressure–velocity correlations.

To solve this problem, we switched to an equivalent,
but more efficient, modified omni-directional integration
algorithm, as illustrated in Fig. 7b. Instead of focusing
on the internal nodes, we focus on the boundary, and
integrate from each of the boundary node to all the other
boundary nodes. As the integration path crosses a cer-
tain internal node, the result of integration is stored in a
data bin associated with this node. Repeating this pro-
cedure for all the boundary nodes results in multi-
direction integration for each internal node. This process
substantially reduces redundant integration paths. The

total number of integration paths for an m · n grid is
reduced to 2m (n+m)+2n (2m+n), i.e., 0.75 · 106 for
m=n=250, almost two orders of magnitude less than
the original procedure. Implementing this method using
a single processor, mid-range Pentium PC provides the
pressure distribution in about 4 min—not yet an opti-
mum (< 1 min is desirable), but already manageable.
After using this procedure for a while, we realized that
we have to resolve two major problems.

First, as illustrated in Fig. 8, the number of times a
certain node is crossed during the omni-directional
integration is not uniform in the circumferential direc-
tion and varies depending on the location in the sample
area. Integration to nodes located close to the center
gives similar weight to all directions, while integration to
nodes located near the boundaries, as shown, involves
non-uniform utilization of integration paths. Errors and
bias would be an inherent outcome.

The second problem is the adverse effects of error in
pressure along the boundary that results from the
accumulation of acceleration errors during the initial
integration along the boundary. The velocity and
acceleration in boundary points is typically the least
accurate, primarily due to the higher image deformation
along its edges. Since each integration path starts at the
boundary, the boundary errors have sustained effect on
all the data.

To solve these problems, we have made the following
changes. First, we introduced the virtual boundary inte-
gration method, which is illustrated in Fig. 7c. The
integration still starts from and stops at the real
boundaries, but instead of following paths originating
from real boundaries, this time the integration proceeds
along paths originating from the virtual boundaries that
extend beyond the real boundaries. Consequently, all the
nodal points of interest are now located away from the
boundary, preventing the path clustering shown in
Fig. 8.

Second, to reduce the effect of erroneous pressure
along the boundary we use iterations and include the
boundary nodes in the integration process. Initially, we
still integrate along the perimeter, but since each
boundary node is crossed by numerous paths, the initial
boundary values can be corrected/replaced with the re-
sults of the omni-directional integration. The integration
process is then repeated using the new boundary values
and the iterations proceed until the results converge or
the variations between iterations decrease to below an
acceptable threshold level. Note that the incremental
changes in pressure within the sample area, i.e., the values
of the material acceleration, do not change. However, the
pressure at each point changes as the values of pressure
along the boundary are updated in each step. The mean
difference in pressure over the entire sample area after
each iteration for a sample cavity shear flow data, Dp, is
presented in Fig. 9 for three different gaps between the
real and virtual boundaries. The gap is expressed in terms
of L, the length of the real grid size. For a gap of 0.5L,
the mean variation in pressure between the first and the

Fig. 8 Distribution of the number of times a certain node is used
for calculating the pressure at the encircled node using integration
paths originated from the real boundaries (i.e., algorithm b in
Fig. 7). For points located near the center of the sample area, the
distribution is uniform. For points located near the boundary, the
distribution is not uniform
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second iterations is less than 5%of the dynamic head, but
it decreases to less than 0.04% of the dynamic pressure
after seven iterations. The number of iterations required
to obtain converged results decreases with increasing gap,
since the rearrangement of integration paths is equivalent
to allocation of weights in the multi-directional integra-
tion. With increasing gap between virtual and real
boundaries, the weight allocation becomes more bal-
anced, achieving a quicker rate of convergence. However,
more balanced weight with increasing gap may not nec-
essarily guarantee an improved mixing of nodal points
during integration andmay even result in a higher residue
error. It seems that for the present data the optimum gap
is somewhere in the 0.5L–1.0L range. However, we need
to gain more experience in order to identify an optimum.

A similar analysis using the synthetic images leads to
similar trends (not shown).

The impact of the new procedure and iterations on
the instantaneous pressure distribution is demonstrated
in Fig. 10. The pressure distribution based on omni-
directional integration starting from real boundaries is
shown in Fig. 10a. Using the boundary data obtained
from this integration as the initial input for the first
iteration of virtual boundary integration gives the result
shown in Fig. 10b. The pressure distribution after the
tenth iteration is shown in Fig. 10c. For this example,
the average pressure difference before and after the first
round of virtual boundary integration is 7.5% of the
maximum pressure value, i.e., the initial correction is
substantial. After ten iterations, the pressure difference
between iteration decreases to 0.04% of the dynamic
pressure, i.e., to insignificant levels. As is evident, the
pressure distributions in Fig. 10b differ significantly
from Fig. 10a in several regions, especially along the
boundaries. The extended virtual boundary greatly re-
duces the bias in integration path, and the iterations
eliminated the dependence on the initial integration
along the outer perimeter of the sample area.

7 Sample pressure distributions

In the samples presented below, the origin of the coor-
dinates is placed at the leading edge of the cavity. To
illustrate the overall flow structure, Fig. 11a shows a
sample instantaneous velocity distribution and stream-
lines. Here, the mean velocity in the nearly potential flow
above the cavity is 10 m/s and the Reynolds number
is 335,000 based on the cavity length. The thickness of
the shear layer is around 2 mm. Due to the oscillation of
the shear layer, the stagnation point of the flow on the

0.0001

0.001

∆p
/(

0.
5ρ

U
2 ) 0.01

0.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Iteration

0.5L

1.0L

1.5L

Fig. 9 Convergence test of the virtual boundary iteration algo-
rithm for cavity shear layer flow showing the mean difference in
pressure after each iteration

Fig. 10 Comparison of pressure distribution obtained using different integration schemes. a Integration starting from real boundaries; b
first round of virtual boundary integration; c after ten iterations of virtual boundary scheme
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downstream wall of the cavity varies significantly from
one instantaneous realization to the next (Lin and
Rockwell 2001; Rockwell and Knisely 1979). In
Fig. 11a, the stagnation point is located about 4 mm
below the trailing edge corner. Below the shear layer,
there is a recirculation zone, which contains remnants of

vorticity swept down from the shear layer. The maxi-
mum velocity in the recirculation region is only about
30% of the free stream velocity.

Following the procedures outlined in this paper, we
calculate the instantaneous distribution of material
acceleration, which is shown in Fig. 11b and then integrate

Fig. 11 Sample results for
instantaneous cavity shear flow
at Ue=10 m/s and
Re=335,000. a Streamlines;
b material acceleration;
c pressure distribution with
streamlines based on a reference
frame moving downstream at
half of the mean velocity above
the cavity
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it to obtain the pressure distribution, presented in
Fig. 11c. The local pressure at the upper left corner is
selected as the reference level. The streamlines are based
on a reference frame moving at half of the external
velocity to show the pseudo-vortical structure. The
maximum magnitude of the material acceleration is
around 80,000 m/s2, which is on the same order of
magnitude as that obtained by La Porta et al. (2001) for
a coaxial counter-rotating disk turbulent flow. The
material acceleration vectors appear to congregate as
converging/diverging clusters in the shear layer. As
expected, high pressure develops in regions of flow
deceleration, and conversely, pressure minima develop
in accelerating regions. Both regions are located mainly
within the shear layer. However, some of these pressure
maxima /minima appear to have global effects over the
entire flow field. Additional samples of instantaneous
pressure distribution are shown in Fig. 12. Clearly, the
instantaneous pressure field varies dramatically due to

the oscillation of the shear layer. Though not presented
here, our results indicate that the temporal derivative of
velocity is typically higher than the convection terms as
the major contributing term to the material acceleration.

As for the magnitude of the viscous term, evaluation
of our data of the cavity shear layer confirms that the in-
plane instantaneous viscous terms are typically three
orders of magnitude smaller than the acceleration term.
The average difference in the final pressure distribution
with and without the viscous term is only 0.008% of the
dynamic pressure.

8 Conclusions

This paper introduces a non-intrusive technique for
measuring the instantaneous spatial distribution of pres-
sure by integrating the measured distribution of material
acceleration. To measure the in-plane projection of the

Fig. 12 Sample instantaneous pressure distributions of the cavity shear flow
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material acceleration, the technique compares the velocity
of the same group of particles at different times, similar to
Jensen et al. (2003). The principles of the procedure are
validated using synthetic rotational and stagnation point
flows. The standard deviation of the measured instanta-
neous pressure from the theoretical value is about 1.0%.
Experimentally, the method consists of recording four
exposures of the particle field. A key to the success of the
application of this technique in an experimental setup is
the precise matching of the two fields of view. A local
deformation correction method is introduced. This tech-
nique maps the velocity field measured by one camera
onto the other based on the measured spatial distribution
of the same particle field as recorded by both cameras
simultaneously. This alignment method reduces the
standard deviation of velocity differences due to relative
misalignment and distortion to about 0.01 pixels in syn-
thetic images. An omni-directional virtual boundary
integration scheme is used to integrate the spatial distri-
bution of acceleration. Multi-integration paths minimize
the effect of local random errors in acceleration. Further
improvements are achieved by iterations to correct the
pressure along the boundary. Typically 3–5 iterations are
sufficient for reducing the incremental mean pressure
change in each iteration to less than 0.1% of the dynamic
pressure. This technique has been used for pressure
measurements in a cavity turbulent shear flow and sample
results are provided. On-going research will provide sta-
tistics on the velocity–pressure gradient tensor. Com-
bined with cavitation inception tests, we will also examine
the relationship between pressure fluctuations and the
onset of cavitation.

The local deformation correction method may be
used for image alignment in circumstances where two
cameras record the same field of view. Although the
present pressure measurement technique is based on 2D
PIV technology, the procedures can be readily extended
to 3D holographic PIV applications.
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