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Abstract
This paper reports a theoretical analysis and the corresponding numerical and experimental
validation results of the error propagation characteristics of the omnidirectional integration
method used for pressure reconstruction from the PIV measured pressure gradient. The analysis
shows that the omnidirectional integration provides an effective mechanism in reducing the
sensitivity of the reconstructed pressure to the random noise embedded in the measured pressure
gradient. Accurate determination of the boundary pressure values is the first step in ensuring the
accuracy of the reconstructed pressure. The boundary pressure error consists of two parts, with
one part decreasing exponentially in magnitude and eventually vanishing, and the other
remaining as a constant with small magnitude through iteration. These results are verified by
using a direct numerical simulation database of isotropic turbulence flow superimposed with
noise at various noise levels and spatial distribution schemes to simulate noise embedded data.
The nondimensionalized average error of the reconstructed pressure based on 1000 statistically
independent pressure gradient field realizations with a 40% added noise level is 0.854 ± 0.406
for the pressure Poisson equation with Neumann boundary condition, 0.154 ± 0.015 for the
circular virtual boundary omnidirectional integration and 0.149 ± 0.015 for the rotating parallel
ray omnidirectional integration. If the converged boundary pressure values obtained by the
rotating parallel ray are used as Dirichlet boundary conditions, the average pressure error by
Poisson is reduced to 0.151 ± 0.015. Of the different variations of the omnidirectional methods,
the parallel ray method shows the best performance and therefore is the method of choice.
Comparisons of the performance of these pressure reconstruction methods using an
experimentally obtained turbulent shear layer flow over an open cavity are in agreement with the
conclusions obtained with the DNS simulation data. With the noise added DNS data, limitations
regarding the pressure reconstruction methods in determining pressure fluctuation statistics are
also identified and quantified.

Keywords: pressure, pressure reconstruction, pressure gradient, boundary condition,
error-embedded data, Poisson equation.
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1. Introduction

Pressure, defined as the normal force per unit area acting on
an arbitrarily oriented surface (either virtual or real) within
the fluid flow field, is an important fluid flow property that
plays a crucial role in the description and modelling of a vari-
ety of flow phenomena. For example, in unsteady and turbu-
lent flows, pressure fluctuations on solid walls often result in
flow-induced vibrations and acoustic noise [1]. In turbulence
research, the pressure diffusion and the pressure-strain tensors
are key unresolved parameters in modelling of turbulence
[2–4]. In hydrodynamics research, pressure is essential for
understanding and modelling cavitation [5, 6]. Pressure is also
of paramount importance in characterizing the performance of
engineering systems operating in fluids. For example, the lift
and the form drag acting on a moving body in fluid depends on
the pressure distribution around it due to relative flow motion.

Because of the importance of the pressure information
in flow field, efforts in developing non-intrusive pressure
measurement techniques have been carried out in the past dec-
ade in the fluids community. Motivated by the lack of appro-
priate means for instantaneous spatial pressure distribution
measurements, Liu and Katz [7, 8] introduced a non-intrusive
technique capable of measuring the instantaneous velocity,
material acceleration and spatial pressure distributions simul-
taneously over a sample area in a turbulent flow field. With
the viscous term being negligible for high Reynolds number
flow in regions away from the wall, the material accelera-
tion is the dominant term that balances the pressure gradient.
Once the material acceleration is obtained experimentally, the
pressure gradient is known. Further integrating it will obtain
the pressure. The material acceleration can be measured non-
intrusively using particle image velocimetry (PIV), either dis-
cretely [7–10] or continuously [11–14] time-resolved.

For pressure reconstruction from the measured pressure
gradient (dominated by the material acceleration), at present
there are three major types of integration methods, i.e. direct
line integration, Poisson equation and least-square reconstruc-
tion. For direct line integration, representative method is the
so-called circular virtual boundary, omnidirectional integra-
tion [7–10, 12] over the entiremeasurement domain, which has
evolved recently to a new algorithm featuring rotating parallel
ray [15] as integration path guidance. This new ‘rotating par-
allel ray’ omnidirectional integration algorithm was recently
successfully applied to 3D pressure reconstruction based on
time-resolved tomographic PIV measurement of a turbulent
channel flow over compliant wall [16]. A simplified multiple-
line integration approach was proposed by Dabiri et al [17], in
which the pressure was reconstructed using median polling of
the integration results along several integration paths origin-
ated from typically eight surrounding directions. However, as
demonstrated by Wang et al [18], the eight-path integration of
Dabiri et al [17], suffers from a considerable compromise in
pressure reconstruction accuracy in comparison with Liu and
Katz’s omnidirectional approach, although the amount of com-
putation of the former is significantly reduced when compared
with the latter.

Representative Poisson equation approach can be found in
de Kat and Van Oudheusden [19, 20] and Violato et al [21],
which use a Poisson equation solver to calculate the pressure
from time resolved PIV measurements (see also [22]). More
recently, an improved Poisson equation approach is proposed
by Auteri et al [23]. Following the advent of time-resolved
PIV, the pressure reconstruction has also been adapted for
measuring the temporal derivatives of surface pressure distri-
bution, which is further used for estimating the acoustic pres-
sure radiated from a surface [24–27].

In addition to the omnidirectional integration and the Pois-
son equation approaches, recently a so-called least-square
reconstruction approach [28] was used for experimentally
obtaining instantaneous pressure field in a wake of a separ-
ated flow over an airfoil. This approach was also referred to
as direct matrix inversion by Liu and Katz [7]. Actually, as
demonstrated by Wang et al [29], the least-square approach is
mathematically equivalent to the Poisson equation approach
with Neumann boundary conditions.

In addition to the above integration approaches, recently
several new methods were also introduced for pressure recon-
struction. For example, with time-resolved 3D3C velocity field
data available, Tronchin et al [30], demonstrated the feasibility
of using a conventional CFD pressure reconstruction approach
to iteratively solve the discretized Eulerian-based Navier–
Stokes equation over a ‘chimera mesh,’ treating the pressure
as an unknown quantity and the measured velocity compon-
ents as the known ones. Using a Poisson solver, Neeteson
and Rival [31], proposed a Lagrangian finite-volume method
to obtain pressure values at particle positions determined by
the Shake The Box (STB) algorithm [32]. In contrast to the
conventional Poisson approach, Huhn et al [33], introduced
a method of 3D pressure field reconstruction in the Fourier
space using a fast Fourier transform (FFT) method. Exploiting
the curl-free property of the pressure gradient as a constraint,
Wang et al [18], developed a proper orthogonal decomposi-
tion (POD)–based pressure reconstruction approach, with the
curl-free constrained POD as an error reduction treatment and
the simple cross-line integration as the final step for obtaining
the pressure.

Obviously, characterization of the accuracy of the pressure
reconstructionmethods is of critical importance in understand-
ing the capabilities and limitations of these methods. There are
a few studies dedicated to the evaluation of the accuracy of the
pressure reconstruction methods as well as the characteriza-
tion of the error propagation properties from the velocity field
or acceleration field to the reconstructed pressure field. One of
the first such studies was performed by Charonko et al [34], in
which the accuracies of several methods including the Poisson
equation approach, line integration, the omnidirectional integ-
ration and three smoothing methods were compared using a
decaying Taylor vortex flow and two simulated pulsatile flow
fields. By considering the effects of grid resolution, sampling
rate, out of plane velocities and noise embedded in the velo-
city field, Charonko et al [34], found that the omnidirectional
method exhibits robust performance over a wide range of res-
olutions, flow conditions and noise levels.
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Most recently, van Gent et al [35], using a simulated experi-
ment from a zonal detached eddy simulation of an axisymmet-
ric base flow at Mach 0.7, conducted a massive comparison
study for pressure reconstruction methods including the
Poisson solver [19], least-square [28], FFT [33], Taylor’s
hypothesis and Poisson solver [36], Voronoi-Lagrangian
finite-volume based Poisson solver [31]. They concluded that,
although with different degrees of accuracy in reconstructed
pressure distributions, all methods were able to capture the
main features of the instantaneous pressure fields, including
the method of de Kat and Ganapathisubramani [36], which
reconstructs the pressure from a single PIV velocity snapshot
based on Taylor’s hypothesis for acceleration estimate.

McClure and Yarusevych [37], investigated the perform-
ance of the four pressure measurement techniques including
omnidirectional [7], eight-path [17], Poisson equation, and
Local least squares using direct numerical simulation data for a
bluff bodywake flow. The accelerationmeasurement approach
is based on the Eulerian approach, not Lagrangian. Unfortu-
nately, they only used five iterations for the omnidirectional
pressure calculation. In comparison, the omnidirectional pres-
sure reconstruction calculation in Liu and Katz [7, 10, 12] typ-
ically involves 60–70 times of iteration. The number of itera-
tions makes huge difference in the accuracy of the reconstruc-
ted pressure result if the omnidirectional method is used, for
reasons which will be explained in detail through an analytical
analysis in this paper.

In addition to the aforementioned studies, Lynch and
Scarano [38], Wieneke [39], Sciacchitano and Wieneke [40],
Wang et al [41], Gomit et al [42], van Gent et al [43, 44]
investigated influence factors such as the PIV measurement
parameters and the velocity and the acceleration evaluation
methods on the accuracy of the material acceleration measure-
ment. Wang et al [41], evaluated analytically the uncertainty
propagation from the velocity field to the material acceleration
and then from the material acceleration to the pressure field.
Using a probability density function to model the uncertainty
in velocity and evaluate its propagation to the material accel-
eration for the Eulerian and Lagrangian approaches, they con-
cluded that the error associated with Lagrangian approach is
smaller than the Eulerian approach. Pan et al [45], performed
an analytical analysis of the error propagation from the pres-
sure gradient to the reconstructed pressure based on the Pois-
son equation approach. Error bounds for the error propagation
indicates that the propagated error level depends on the bound-
ary conditions, the domain shape and the error level on the
pressure gradient field and boundaries. Also, the domain with
pure Neumann boundary conditions needs to satisfy the com-
patibility condition which can be difficult for PIV. This work
also lays out some guidelines for designing PIV experiments
aiming to reduce error propagation to pressure measurement.

In this paper, we introduce a theoretical analysis of the
error propagation from the pressure gradient to the reconstruc-
ted pressure field based on the omnidirectional integration
method. To our knowledge, this is the first time that the error
propagation property of the omnidirectional pressure recon-
struction methods is investigated analytically. In particular,
in section 2 we describe the principle of the omnidirectional

integration methods and explain how they are implemented.
In section 3 we derive the analytical expression for the error
propagation from the pressure gradient to the reconstruc-
ted pressure for the 3D omnidirectional methods, which is
valid also for the 2D omnidirectional implementation. In sec-
tion 4 we evaluate and compare the error propagation and the
pressure reconstruction accuracy for three approaches includ-
ing the circular virtual boundary omnidirectional integration
method, the parallel ray omnidirectional integration method
and the conventional Poisson equation method. Please note
a simplified version (Liu and Moreto [46]) of this paper was
presented at ISPIV 2019 in Munich, Germany.

2. Methods

2.1. Overview

Pressure can be obtained from PIV experiments in a two-
step process: first the pressure gradient is computed from the
velocity fields, then the second step is the integration of the
pressure gradient to obtain the pressure field. The pressure
gradient can be obtained using either the Eulerian approach
[19, 21, 47], where the unsteady and convection terms of the
Eulerian expansion of the material acceleration are calculated
directly as shown in equation (1), or the Lagrangian approach,
where the material acceleration is calculated directly by tra-
cing imaginary fluid particles along their trajectories based on
the so-called pseudo tracking method [7, 19, 21, 48] as shown
in equation (2):

∇p= −ρ

[
∂u
∂t

+(u ·∇)u− ν∇2u
]

(1)

∇p= −ρ

[
Du
Dt

− ν∇2u
]

(2)

For high Reynolds number flow in regions away from the
wall, the viscous term is usually 3–4 orders ofmagnitude smal-
ler than the pressure gradient term and therefore is negligible
[7]. In this case, the pressure gradient can be determined from
the measured material acceleration. The error propagation
from velocity to acceleration was investigated by Jensen and
Pedersen [49], Violato et al [21], de Kat and van Oudheusden
[19], van Oudheusden [22], Wang et al [18], and van Gent
et al [35]. Those investigations demonstrate that for advection
dominated flows, the Lagrangian approach shows consistently
less sensitivity to noise. Recently, van Gent et al [43, 44], by
investigating the error propagation from velocity to material
acceleration for the pseudo-tracking method, found that the
Courant–Friedrichs–Lewy (CFL) condition that regulates the
integration time step for material acceleration calculation is
automatically satisfied when the PIV experiment is designed
such that the particle displacement is smaller than a quarter of
the interrogation window size and the interrogation window
overlap is 75%. They also clarified the guiding criterion for
a meaningful spectral representation of the material accelera-
tion data in terms of the PIVwindow size and the pseudo-track
time interval in comparison with the flow characteristic length
and time scales.
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To reconstruct the pressure from the pressure gradient, one
can use the Poisson equation as shown in equation (3) or (4),
which are obtained by taking divergence of either equation (1)
or (2), respectively:

∇2p= −ρ∇·
[
∂u
∂t

+(u ·∇)u− ν∇2u
]

(3)

∇2p= −ρ∇·
[
Du
Dt

− ν∇2u
]
. (4)

An example of using the Poisson equation for pressure
reconstruction can be found in de Kat and van Oudheusden
[19], and the error bounds for the Poisson solution can be
found in Pan et al [45]. Equations (1) and (2) can be integrated
directly by means of line integrals. While several approaches
were proposed to perform the line integration [7, 17, 50],
the omnidirectional integration proposed by Liu and Katz [7],
shows the most robust results in the assessments of Charonko
et al [34], and Wang et al [18]. Moreover, a recent study by
Wang et al [51], also demonstrated using DNS isotropic tur-
bulence and turbulent channel flows that the new rotating par-
allel ray omnidirectional method [15] has better performance
than the conventional Poisson equation approach.

2.2. Scope of work

How to minimize the errors embedded in the velocity meas-
urement result and the error propagation in derived quantit-
ies based on velocity measurement is always a central theme
for PIV’s technological advancement. As for factors affecting
the accuracy of the reconstructed pressure, besides the influ-
ences of the pressure reconstruction scheme and the pressure
gradient (or acceleration) measurement scheme, errors due to
velocity can always be traced back to those factors affect-
ing the velocity measurement accuracy. For a systematic ana-
lysis of the error propagation behavior, we can divide the error
propagation from velocity to reconstructed pressure into dif-
ferent stages, including the error generation stage in the velo-
city measurement, the error propagation stage from velocity
to pressure gradient (acceleration) measurement, and the error
propagation stage from the measured pressure gradient to the
reconstructed pressure. Fortunately, error propagation within
these distinguished stages are not coupled, thus allowing us to
investigate the error propagation problem at different stages
separately. For the error generation stage in the velocity meas-
urement, there are numerous papers [52, 53] available in lit-
erature discussing how to minimize the influence of factors
such as seeding density, correlation peak-finding scheme for
achieving sub-pixel accuracy, out-of-plane motion, high velo-
city gradient, etc on the accuracy of the velocity measure-
ment. For the error propagation stage from velocity to pressure
gradient (acceleration) measurement, there are also abund-
ant research efforts as mentioned before [18, 19, 21, 22, 35,
42, 43, 49] in characterizing the error propagation from PIV
measured velocity to acceleration. As for the error propagation
stage from the measured pressure gradient (with the measured
acceleration as the dominant contributor) to the reconstructed

pressure field, although previous researchers such as Pan et al
[45], investigated the problem in the context of Poisson equa-
tion reconstructions, there is no literature available discussing
about how the error is propagated from the measured pressure
gradient to the reconstructed pressure using the omnidirec-
tional methods. This paper aims to fill this gap for the first
time by investigating the characteristics associated with the
error propagation from the measured pressure gradient to the
reconstructed pressure based on the omnidirectional integra-
tionmethods introduced in Liu and Katz [7, 8, 10] and Liu et al
[15]. Through this work, we anticipate to elucidate the mech-
anisms for random noise reduction that grants the robustness
of the omnidirectional integration methods. To facilitate the
analysis, details about the history and principle of the omni-
directional integration methods are described below.

2.3. The omnidirectional integration

The omnidirectional integration of the pressure gradient for
obtaining pressure distribution from PIV experiments was pro-
posed by Liu and Katz [8]. The integration of the meas-
ured pressure gradient is carried out by following the shortest
integration paths that connect the domain boundary points
across the integration domain. To determine the pressure at
an internal nodal point in the field of view, the local pres-
sure values obtained from the integration paths passing by the
internal nodal point are averaged so as to minimize the influ-
ence of the error embedded in the measured pressure gradient.
This method was later improved by placing a virtual boundary
outside the real flow field domain and allowing the integra-
tion paths originate from and end at the virtual boundary [7]
so as to reduce the path clustering close to the real boundar-
ies. A further development was introduced by Liu and Katz
[10, 12] by using a circular virtual boundary. The most recent
improvement in the omnidirectional integration methods was
introduced by Liu et al [15], using rotating parallel rays as
integration guide lines.

The essence of the omnidirectional integration is to min-
imize the influence of the errors embedded in the measured
acceleration data on the final pressure result, so as to achieve
a reliable and accurate pressure measurement. The pressure
integration arrangement is based on the fact that the pressure is
a scalar potential, therefore the spatial integration of the pres-
sure gradient must be independent of the integration path. As
shown in figure 1(a), the discrete points distributed uniformly
along the circular virtual boundary serve as guiding points to
define the orientation and position of the integration paths. A
group of ‘virtual’ integration paths start from one point and
end at other points on the virtual boundary, creating a ray pat-
tern of integration paths that cover the real field of view. The
actual integration starts from and stops at the real boundaries,
in a ‘zig-zag’ fashion, along real nodal points that have the
shortest distance to the integration paths. Each time the integ-
ration path crosses a certain internal node, the result of integ-
ration is stored in a data bin associated with that internal node.
This procedure is repeated for all the virtual boundary nodes.
Averaging all the values stored in data bins provides the result
of the omnidirectional integration.
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Figure 1. The omnidirectional algorithms. (a) The circular virtual boundary omnidirectional integration algorithm. (b) The rotating parallel
ray omnidirectional integration algorithm. (c) Ray orientation with respect to the pressure calculation domain as a function of d (distance
from the domain center) and α (ray rotation angle).

One shortcoming of the circular virtual boundary omni-
directional integration method is that except the points near
the geometric center of the real integration domain, points
at other places do not see an axisymmetric distribution of
the virtual integration paths, which results in a non-uniform
weight of contribution to the final integration result. To over-
come this inherent defect, Liu et al [15], introduces a new
algorithm featuring rotating parallel ray (figure 1(b)) as integ-
ration path guidance. Unlike the virtual boundary omnidirec-
tional method, the new rotating parallel ray omni directional
integration method utilizes parallel rays as guidance for integ-
ration paths. The parallel rays can be viewed as being origin-
ated from a virtual boundary at an infinite distance from the
real boundary. Effectively, by rotating the parallel rays, omni-
directional paths with equal weights coming from all direc-
tions toward the point of interest at any location within the
computation domain will be generated. In this way, the loc-
ation dependence of the integration weight due to an inher-
ent defect (though not significant) in virtual path arrangement
in the old algorithm will be eliminated. As shown in figure
1(c), the orientation of the parallel rays is characterized by the
angle α with respect to the horizontal direction of the pres-
sure calculation domain. The distance between adjacent par-
allel rays is denoted as ∆d, where d is the distance from the
domain center to the ray, i.e. the guideline for the pressure
reconstruction path.

For all the omnidirectional integration methods, the fol-
lowing procedures must be applied adequately to reduce error
propagation from the boundaries.

(a) Boundary pressure calculation.
1. Select a pressure reference point.
2. Initialize pressure values on the boundary points by

either simple line integration along boundaries or by
setting the boundary pressure values to be zero.

3. Integrate the pressure gradient field based on the spe-
cific method of the omnidirectional integration (e.g.
the virtual boundary omnidirectional integration or the
parallel ray omnidirectional integration).

4. Update the boundary pressure values with the newly
calculated data.

5. Iterate until prescribed accuracy (usually on the order
of 10−15 for the averaged pressure differences between
iteration) is achieved.

(b) Inner domain pressure calculation.

3. Error propagation analysis

One primary concern for the pressure obtained from PIV
measurements is its accuracy. As mentioned before, recently
Pan et al [45], derived the error bounds for the pressure
reconstruction from the Poisson solution. However, for the
omnidirectional methods, there is still no theoretical analysis
available about the error propagation from the pressure gradi-
ent to the reconstructed pressure. To fill in the gap, we now
show the analysis of the error propagation from the pressure
gradient to the reconstructed pressure by using the omnidirec-
tional integration methods.

3.1. Pressure errors on boundary points

Assuming an error ε∇p that contaminates the measured pres-
sure gradient field∇p̃ can be separated from the exact pressure
gradient ∇p, we have

∇p̃=∇p+ ε∇p. (5)

We apply the omnidirectional integration procedures
described in section 2 to the integration of equation (5) over a
3D computational domain as shown in figure 2. Starting from
an iterative process for the pressure determination at bound-
ary points, we define a reference pressure at a fixed boundary
point location sr (figure 2(a)) as p̃r = p̃ref. We then initialize
the boundary points, either by taking values of a simple line
integration along boundary points starting from the reference
point, or simply by setting all boundary points except the ref-
erence to zero. It turns out that, as demonstrated in figure 3
(using a 2D calculation as an example), there is no difference
between the two boundary value initialization methods on the
final pressure reconstruction results as long as sufficient num-
ber of iterations are involved in achieving the same prescribed
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Figure 2. (a) Integration path connections among boundary points
for omnidirectional integration. (b) Integration path connection
between an inner nodal point and boundary points.

level of convergence for the boundary pressure value calcula-
tion. Also as shown in figure 3, even when the initial bound-
ary pressure values are initialized with a very large number
(e.g. 1.0 × 104), the final convergence can also be achieved
if the number of iterations is sufficiently large enough. Please
note, as shown in figure 3(a), the boundary pressure initial-
ization method using simple line integration along boundary
leads to the fastest convergence for the testing case without
added noise. As a contrast, when the pressure gradient field
is embedded with the 40% random noise, the approach of ini-
tialization of boundary pressure values with zeros exhibits the
fastest convergence (figure 3(b)).

After initializing the boundary points, we then perform the
integration to obtain converged boundary point values fol-
lowing the paths defined by the omnidirectional integration
algorithm (e.g. the omnidirectional integrationmethods shown
in Liu and Katz [7, 12] or Liu et al [15]). The pressure p̃(q+1)

n

at an arbitrary boundary point sn as shown in figure 2(a) after
(q+ 1) times of iteration is obtained from a two-step calcu-
lation. First, the pressure value p̃(q+1/2)

n is calculated by aver-
aging the pressure values computed from each of the total Nn
integration paths connecting to the current boundary point (sn)
from any of the other boundary points (denoted by sl) as shown
in equation (6):

p̃(q+1/2)
n =

1
Nn

M∑
l=1

[
R(l,n)

(
p̃ql +

∫ sn

sl

∇p̃ · ds
)]

(6)

Figure 3. Pressure error convergence at boundary points with three
different initial conditions for pressure reconstruction using the
parallel ray omnidirectional integration. The pressure error
converges to the same value for all initial conditions tested. (a-i) A
sample pressure error at the boundary point (i= 1, j= 127), and
(a-ii) the average pressure error over all the boundary points
reconstructed from the pressure gradient field without embedded
noise. (b-i) A sample pressure error at the boundary point
(i= 1, j= 127), and (b-ii) the average pressure error over all the
boundary points reconstructed from the pressure gradient field
embedded with random noise with an amplitude of 40% of(
|∇p|DNS

)
max

.

where n= 1 toM, with M being the total number of the
boundary points over the entire computation domain, R(l,n)
being the number of repetitive integration path connections
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(R(l,n)⩾ 1) between boundary points (sl) and (sn) and p̃ql
being the pressure at point sl obtained after the completion of
iteration q. The way that the boundary points connect to each
other depends on the type of omnidirectional algorithm used
in the pressure reconstruction. In equation (6), R(l,n) and Nn
satisfy the following relationship:

Nn =
M∑
l=1

R(l,n). (7)

Please note that the second term in equation (6),
∫ sn
sl
∇p̃ · ds,

which represents the line integration of the measured pressure
gradient across the domain between boundary points (sl) and
(sn), is a fixed value that does not change between iterations.
This property was noted in Liu and Katz [7], and has also
been utilized ever since by calculating the integral only once
during the boundary pressure iteration process when the omni-
directional integration methods are implemented. In this way,
redundant calculations can be significantly reduced.

As the second step for calculating pressure p̃(q+1)
n , each

time after the completion of one round of iteration within
which all boundary points are updated according to equation
(6), we apply a correction term to ensure the pressure at the ref-
erence point p̃(q+1)

r is maintained at the fixed reference value
p̃ref. The amount of such correction is

∆
(q+1/2)
ref = p̃ref− p̃(q+1/2)

r . (8)

Applying the above correction, we have

p̃(q+1)
n = p̃(q+1/2)

n +∆
(q+1/2)
ref . (9)

In this way, the base error
∣∣∣∆(q+1/2)

ref

∣∣∣ can be shed off at the

end of each round of iteration. Please note that for the omni-
directional integration methods investigated in this paper, the
procedures for updating the boundary pressure value p̃n are the
same.

Note also that the reference pressure p̃ref may contain an
associated error εref. For a given pressure gradient field real-
ization, the error εref has a fixed value for a given realization
of p̃ref:

p̃ref = pr+ εref (10)

where pr denotes the exact pressure value at the reference
boundary point sr. Consistent with this notation, if the exact
pressure at a boundary point sn is pn, the error ε

q
n at this bound-

ary point after q times of iteration is

εqn = p̃qn− pn. (11)

We can show (see appendix A for details) that the pressure
error at a boundary point after each round of iteration contains
three parts, as listed below:

ε(q+1)
n = εqnB+ εnA+ εref (12)

In equation (12), εnA, denoting the error accumulated along
the integration paths involved in the pressure reconstruction
over the flow field domain, can be expressed as

εnA =
M∑
l=1

[
R(l,n)
Nn

(
εt(l,n) +

∫ sn

sl

ε∇p · ds
)

−R(l,r)
Nr

(
εt(l,r) +

∫ sr

sl

ε∇p · ds
)]

(13)

where Nn and Nr, following the definition in equation (7), rep-
resent the total number of integration paths involved in the
integration for pressure p̃n and p̃r, respectively. εt(l,n) denotes
the numerical truncation error for the pressure integration
along the path connecting boundary points sl and sn, and
εt(l,r) the numerical truncation error for the pressure integra-
tion along the path connecting boundary points sl and sr (see
figure 2(a)). Because the integration paths that lead to the pres-
sure reconstruction at a certain boundary point (e.g. sn or sr)
are fixed, the truncation errors εt(l,n) and εt(l,r) , as well asNn and
Nr, are therefore also fixed for a given omnidirectional integ-
ration method. In addition, for a given pressure gradient field,
ε∇p is also fixed. Consequently, according to equation (13),
εnA is a fixed value which is independent of the number of
iterations at the given boundary point location sn. This obser-
vation can be confirmed from figure 8, which will be shown
later on in section 4.3.

In equation (12), εqnB represents the weighted contribution

to ε(q+1)
n from the pressure errors at all boundary nodal points

(εql , with l= 1, . . . ,M) at iteration round q during the calcula-
tion of p̃q+1

n . The expression for εqnB is defined as

εqnB =
M∑
l=1

{(
R(l,n)
Nn

− R(l,r)
Nr

)
εql

}
(14)

which can also be written as

εqnB =
M∑
l=1

(w(l,n) · εql ) (15)

with w(l,n) denoting a weight that applies to εql :

w(l,n) =
R(l,n)
Nn

− R(l,r)
Nr

. (16)

Please note that r in equations (14) and (16) is a fixed
number for a given omnidirectional integration calculation.
The weight w(l,n) depends only on the omnidirectional integ-
ration method used. It is a function of the integration paths
involved in the calculation of p̃q+1/2

n and p̃q+1/2
r , but the value

of w(l,n) does not change with the number of iteration q,
nor does it change with the pressure gradient field that it is
applied to. For a measurement domain with a sufficiently large
number of boundary nodal points and a sufficiently dense
parallel ray configuration, |w(l,n)| ≪ 1, |R(l,n)/Nn| ≪ 1
and |R(l,r)/Nr| ≪ 1as shown in figure 4, which presents
the distributions of the w(l,n) value and its corresponding
component terms R(l,n)/Nn and R(l,r)/Nr over the space
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Figure 4. The weight matrix w(l,n) and the corresponding component terms R(l,n)/Nn and R(l,r)/Nr for the rotating parallel ray
omnidirectional integration algorithm applied to a 254× 254 domain of pressure gradient field, with the reference boundary pressure point
selected as the lower-left corner of the domain, thus r = 1. The upper row corresponds to the parallel ray configurations of
(∆α= 0.04◦,∆d∗ = 0.4), the center row (∆α= 0.20◦,∆d∗ = 0.4), and the bottom row (∆α= 3.00◦,∆d∗ = 0.4).

of l− n for the rotating parallel ray omnidirectional integ-
ration algorithm applied to a 254× 254 domain of pressure
gradient field. Please note r= 1 in these plots because the
reference boundary pressure point is selected as the upper-
left corner of the pressure gradient domain. Further com-
parison in figure 4 indicates that the actual value of w(l,n)
depends on the ray density (∆α,∆d∗), with ∆d∗ =∆d/∆h,
where ∆h is the grid cell size. For example, for a paral-
lel ray integration with sufficient dense ray configuration,
i.e. (∆α= 0.20◦,∆d∗ = 0.4), or (∆α= 0.04◦,∆d∗ = 0.4),
the weight magnitude w(l,n) and its contributing compon-
ent terms R(l,n)/Nn and R(l,r)/Nr, are all on the order of
O
(
10−3). However, when the ray has a less dense config-

uration, e.g. (∆α= 3.00◦,∆d∗ = 0.4), the values of these
coefficients are increased to O

(
10−2) as shown in figure 4,

implying a reduced rate of convergence. As shown later on in
the discussion of section 4.4, the ray density (∆α,∆d∗) not
only influences the rate of convergence for the boundary pres-
sure values, but also affects the reconstructed pressure accur-
acy. Consistent with the preliminary parameter optimization

study by Liu et al [15], regarding the optimum choices of line
spacing ∆d∗ and line rotation angle increment ∆α, higher
reconstructed pressure accuracy can be achieved by using a
denser parallel ray setting. Actually, as revealed by equations
(14) and (15), a denser parallel ray setting means more bound-
ary pressure point are connecting to each other. For a fixed
boundary point (sn), to ensure every boundary nodal point (sl)
has at least one chance to connect point (sn), simple trigono-
metric analyses by considering the extreme corner point cases
require∆α= 0.11◦ and 0.35<∆d∗ < 0.71 for a domain size
of 254× 254 grids (See appendix B for details).

It can be shown based on linear recurrence theory (see the
appendix A for details) that the implicit recursive relationship
for the pressure error at the domain boundary as shown in
equation (12) can be written as

εqn = λqn,maxCn,max+ εnA+ εref (17)

where Cn,max is a constant that depends on the pressure initial-
ization (when q= 0) at the boundary points and λn,max is the

8
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characteristic error decay rate with its absolute value less than
1, i.e. |λn,max|< 1, which means that the boundary pressure
error εqn follows an exponential decay with the number of iter-
ation q. Please note that the actual value of λn,max depends on
the types of omnidirectional integration algorithm used, and
|λn,max|< 1 is a characteristic property of the omnidirectional
integration methods due to the fact that |w(l,n)| ≪ 1 as shown
in figure 4. As an example, the absolute value of λn,max for
the rotating parallel ray omnidirectional integration methods
is shown in the appendix A.

Because the characteristic error decay rate |λn,max|< 1,
after sufficient amount of iterations, according to equation
(17), the final boundary pressure error εqn converges to

εqendn ≈ εnA+ εref. (18)

Equation (18) implies that, according to equation (12):

εqendnB ≈ 0 (19)

which is demonstrated in section 4.3 using data from a DNS
isotropic turbulence database embedded with imposed errors
as testing cases.

3.2. Pressure error at inner nodal points

After the boundary values are converged, pressure values at
the inner nodal points can then be calculated using the omni-
directional integration method. As shown in figure 2(b), sim-
ilar to the calculation of the pressure values at the boundary
points, the pressure p̃ijk at an inner nodal point sijk is related
to a boundary pressure value p̃l through an integration path
that connects boundary point sl to point sijk. In a similar fash-
ion as that for the boundary points, the pressure at an inner
nodal point is determined by taking the average of the pres-
sure values obtained along all integration paths coming from
all boundary points towards that inner nodal point:

p̃ijk =
1
Nijk

M∑
l=1

[
R(l, ijk)

(
p̃l+

∫ sijk

sl

∇p̃ · ds
)]

(20)

where Nijk denotes the total number of integration paths that
originate from boundary point sl and pass by the inner nodal
point sijk. Similar to that defined in equation (7):

Nijk =
M∑
l=1

R(l, ijk) (21)

where R(l, ijk) represents the number of repetitive connections
between points sl and sijk. Decomposing the pressure and pres-
sure gradient terms in equation (20) into exact terms and error
components according to equations (5) and (11), we have

pijk+ εijk =
1
Nijk

M∑
l=1

[
R(l, ijk)

×
(
pl+ εl+

∫ sijk

sl

∇p · ds+
∫ sijk

sl

ε∇p · ds
)]
(22)

where εijk is the pressure error at an inner nodal point sijk, and
εl is the pressure error at a boundary point sl after the conver-
gence of the boundary pressure value calculation.

Equation (22) can be simplified by recognizing that the
pressure pl at a boundary point sl, plus the integral of the exact
pressure gradient∇p along the integration path connecting the
boundary point sl and the inner nodal point sijk, is equal to the
exact pressure pijk at the inner nodal point sijk plus the associ-
ated truncation error εt(l,ijk) due to the numerical method used
in the integration along the path:

pl+
∫ sijk

sl

∇p · ds= pijk+ εt(l,ijk) . (23)

Combining equations (22) and (23), we have

εijk =
1
Nijk

M∑
l=1

[
R(l, ijk)

(
εl+ εt(l,ijk) +

∫ sijk

sl

ε∇p · ds
)]

.

(24)
Equation (24) shows that the pressure error at an inner nodal

point is the average over all the number of integration pathsNijk
for the combination of the pressure error (εl) at boundary point
sl, the truncation error

(
εt(l,ijk)

)
along the path from boundary

point sl to inner nodal point sijk, and the line integration of the
error embedded in the pressure gradient ε∇p along the path
from sl to sijk.

After the convergence of the boundary pressure iteration,
according to equation (18):

εl ≈ εlA+ εref. (25)

Plugging equation (25) into equation (24), we have

εijk =
1
Nijk

M∑
l=1

[
R(l, ijk)

(
εlA+ εt(l,ijk) +

∫ sijk

sl

ε∇p · ds
)]

+ εref

(26)
where εlA, by following the definition in equation (13), is

εlA =
M∑

m=1

[
R(m, l)
Nl

(
εt(m,l) +

∫ sl

sm

ε∇p · ds
)

−R(m,r)
Nr

(
εt(m,r) +

∫ sr

sm

ε∇p · ds
)]

(27)

As indicated in equations (26) and (27), the final pressure error
at an inner nodal point is a function of the weighted average of
(i) the line integration of the embedded pressure gradient error
over the measurement domain and (ii) the truncation error
associatedwith the numerical line integration, plus (iii) the ref-
erence pressure error. Since the weights |R(l, ijk)/Nijk| ≪ 1,
|R(m, l)/Nl| ≪ 1 and |R(m,r)/Nr| ≪ 1 (further discussion
can be found in section 3.1 with regard to figure 4), as long
as the truncation errors and pressure gradient errors are ran-
dom and homogeneously distributed, both εlA and εijk should
be small finite values.

Please note that the error propagation analysis developed
in a 3D space is readily applicable to the case of a 2D plane,
which is simply a special case of the 3D space with k= 1.

9
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Figure 5. Correlation coefficient between the random pressure gradient noise added to simulation realization 1 and the random pressure
gradient noise added to all the subsequent simulation realizations. The near zero correlation coefficient indicates that the pressure gradient
noise are uncorrelated.

Thus, for simplicity, in the following section we use a 2D
pressure field embedded with homogeneously distributed ran-
dom error for the verification of the above error propagation
analysis.

4. Results

4.1. DNS based test cases

To validate the error propagation model for the omnidirec-
tional integration, we utilize homogeneous isotropic turbu-
lence flow direct numerical simulation (DNS) data available
to the public from the John Hopkins University Turbulence
Database (JHTDB). The Taylor-scale Reynolds number of this
isotropic turbulence flow is 433. Details about the isotropic
turbulence database can be found in Perlman et al [54], Li
et al [55], and Graham et al [56]. From the database, we
select a sample plane containing 256 × 256 grid nodal points.
At each of these nodal points, the exact pressure value, as
well as the pressure gradient components dp

dx and dp
dy obtained

using central finite difference, are available. To simulate the
measurement uncertainties, 1000 statistically independent ran-
dom noise with standard uniform spatial distributions and
zero mean value are embedded in the pressure gradient, cre-
ating 1000 sample realizations of pressure gradient distribu-
tion for the pressure reconstruction error investigation. The
random noise is generated using a built-in Matlab® function
‘rand’, with 1000 distinct seed numbers. The noise amplitude
is set to 40% of

(
|∇p|DNS

)
max

, i.e. the maximum magnitude
of the pressure gradient in the sample DNS planar data. Fig-
ure 5 shows the correlation coefficients (ρ) between the noise

embedded in the first simulation map and those in all other
simulations. The correlation coefficient ρ is defined as

ρ(A,B) =
1

ImaxJmax− 1

Imax∑
i=1

Jmax∑
j=1

[(
Aij−µA

σA

)(
Bij−µB

σB

)]
(28)

where A and B represent the noise added to the pressure
gradient components at realizations 1 and k, i.e. ε∇xnp(1) and
ε∇xnp(k), respectively, with n= 1 or 2 corresponding to x or
y, and k= 2–1000; µA and µB being the mean values while
σA and σB being the standard deviations of A and B, respect-
ively; and Imax and Jmax being the maximum mesh indices in
x and y directions, respectively. The almost zero correlation
values (−0.014⩽ ρ⩽ 0.014) shown in figure 5 clearly indic-
ate that the random noise distributions superimposed on the
DNS pressure gradient field are indeed uncorrelated, i.e. stat-
istically independent.

In PIV velocity measurements, errors in adjacent velo-
city vectors are correlated. Also, errors can be unevenly
distributed due to gaps in the flow seeding and localized
regions of elevated shear and rotation. To approximate the
error distribution in a more realistic fashion, in addition to
the test case of allocating homogeneously distributed ran-
dom noise with amplitude of 40% of

(
|∇p|DNS

)
max

to the
entire domain of the DNS pressure gradient field (Case A),
we also examined three more test cases with 1000 independ-
ent realizations each, namely Case B, uniform random noise
with amplitude of 40% of

(
|∇p|DNS

)
max

allocated to a central
stripe region in a domain with zero background noise added
elsewhere; Case C, uniform random noise with amplitude of
40% of

(
|∇p|DNS

)
max

allocated to a central stripe region and

10
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Figure 6. (a) The exact pressure distribution sampled from an isotropic turbulence DNS database. (b) Pressure gradient obtained from the
DNS pressure field by central finite difference method. (c) Sample realization (among 1000 of similar ones) of pressure gradient components
embedded with random noise with an amplitude of 40% of

(
|∇p|DNS

)
max

, i.e. the maximum DNS pressure gradient magnitude. (d) Sample
realization of pressure gradient component distributions with 40% of

(
|∇p|DNS

)
max

random noise allocated to the central stripe of the
domain (Ls/Ly= 0.20) and no noise added to the rest of the domain. (e) Sample realization of pressure gradient component distributions
with 40% of

(
|∇p|DNS

)
max

random noise allocated to the central stripe of the domain (Ls/Ly= 0.20) and 5.0% noise added to the rest of the
domain. (f) Gaussian noise with zero mean and standard deviation of 8.5% of

(
|∇p|DNS

)
max

superimposed to the entire domain.

5%
(
|∇p|DNS

)
max

background noise added to the rest of the
domain; Case D, a Gaussian noise with a zero mean and a
standard deviation of 8.5% of

(
|∇p|DNS

)
max

allocated to the
entire domain. With these four test cases, actual flow field
applications such as PIV pressure measurement inside a tur-
bulent wake (corresponding to test Cases A and D) or a free
shear layer over a cavity (corresponding to test Cases B and
C) can be approximately represented.

As an example to show the level of the imposed noise con-
tamination of the pressure gradient fields, figure 6 presents a
side-by-side comparison of the DNS pressure gradient field
and sample realizations of the four test cases with various
scenarios of embedded noise distribution schemes. The error
propagation results from these noise contaminated pressure
gradient fields using different pressure reconstruction meth-
ods will be presented and discussed in sections 4.4 and 4.5,
respectively.

4.2. The influence of the numerical truncation error on the
final reconstructed pressure error

Amathematical model for the error propagation from the pres-
sure gradient to the pressure reconstructed using omnidirec-
tional integration is introduced in section 3. As indicated in
equation (26), the error for the pressure at each inner node
point is the average of the pressure error term εlA as defined
in equation (27), the truncation error εt(l,ijk) along the paths
linking boundary point sl to inner nodal point sijk, and the
line integration of the error embedded in the pressure gradi-
ent ε∇p along paths from sl to sijk. Since εlA is only an aver-
age of the truncation terms εt(m,l) and εt(m,r) and the line integ-
ration of the pressure gradient error term ε∇p as defined in
equation (27), overall εijk is only a function of the truncation
error terms and the pressure gradient error terms. For the
DNS data discussed in section 4.1, since the pressure gradient
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components dp
dx and

dp
dy are obtained using central difference

method, the error term path ε∇p in equations (26) and (27)
can then be further decomposed into two parts, one is ε∇ptrunc
denoting the truncation error due to central difference scheme;
the other is ε∇pnoise denoting the noise superimposed onto the
pressure gradient components.When there is no noise added to
the pressure gradient, the final error of the reconstructed pres-
sure is only a function of the truncation error terms, i.e. the
terms involving εt(l,ijk), εt(m,l) , εt(m,r) and ε∇ptrunc , according to
equations (26) and (27). For the present study, the line integ-
ration is implemented using the trapezoidal method, which
has a second order truncation error with respect to grid size
(∼ O

(
h2
)
, Gerald andWheatley [57]). The final pressure error

variation with respect to the truncation errors εt(l,ijk), εt(m,l)
and εt(m,r) (please note all these three truncation errors are of
the same nature) is evaluated by under-sampling the pressure
gradient domain (i.e. skipping nodal points to achieve coarse
grid) while keeping the domain size constant and using the
original pressure gradient values on the coarse grids (the trun-
cation error due to ε∇ptrunc is fixed in this study). The grid size
is defined in nondimensional form as

h∗ =
∆xk
∆xmin

=
Nmax− 1
Nk− 1

(29)

where ∆xmin and ∆xk denote the original and the increased
grid sizes, respectively, and Nmax and Nk the number of the
total nodal points along the horizontal side (the x-direction)
for the original and the under-sampled grids, respectively. The
parameters for the grids tested are summarized in table 1. Two
sample cases were evaluated: one case with no noise added and
one case with 40% noise (with respect to the maximum mag-
nitude of the DNS pressure gradient in the domain) added to
the pressure gradient. For both cases, the pressure was recon-
structed using the rotating parallel ray omnidirectional integ-
ration (∆α= 0.20,∆d∗ = 0.4). For each grid size, the spatial
average of the absolute value of the error normalized by the
standard deviation of the exact (DNS) pressure in the domain
(|εij|/pstd) is obtained and plotted in logarithmic scale against
the nondimensional grid spacing, as shown in figure 7. For the
case without added noise, the pressure error increases approx-
imately as a second order power of the grid spacing, indic-
ating the pressure error in this case is indeed in agreement
with the trapezoidal truncation error (∼ O(h2)) involved in
the pressure reconstruction. In contrast, when the 40% noise
is superimposed over the entire domain (Case A), the pres-
sure error increases with the grid size at an approximately first
order increasing rate, i.e. approximately in a linear fashion,
indicating that the pressure gradient error terms

∫ sijk
sl

ε∇pds,∫ sl
sm
ε∇p · ds and

∫ sr
sm
ε∇p · ds in equations (26) and (27) have

dominant contribution over the truncation error terms to the
final pressure error.

4.3. Error convergence for boundary pressure values
through iteration

As shown in equations (12) and (15), the convergence of the
boundary pressure error ε(q+1)

n is achieved through the error

term εqnB, which in turn relies on the weight coefficient matrix
w(l,n) that applies to the boundary pressure error εql to reduce
the error. As discussed in section 3.1 and shown in figure 4,
|w(l,n)| ≪ 1 for a sufficiently dense parallel ray configura-
tion, which provides the basis for εqendnB ≈ 0 (i.e. equation 19)
and correspondingly εql eventually reduced to εqendn ≈ εnA+ εref
(i.e. equation 18) as discussed in section 3.1. To show this
evolution process, figure 8 presents the evolution process of
the boundary pressure error convergence for pressure error
εqn and error components εnA and εqnB with respect to iter-
ation round q at all boundary points for representative iso-
tropic turbulence test cases with and without the 40% noise
added to the entire pressure gradient field. As mentioned in
section 3.1, εnA does not change through iteration. This obser-
vation is verified in figure 8 by examining the evolution pro-
cess of εnA for both testing cases (i.e. with and without added
noise). In contrast, the overall amplitudes for both εqn and
εqnB are reduced gradually through iteration, with their final
values converged to εqendn ≈ εnA+ εref = εnA (εref = 0 for both
cases tested) and εqendnB ≈ 0, respectively, as expected. Please
note, the initial error distributions ε0n for both testing cases are
the same because for both cases the boundary values are all
initialized with zero values at the beginning of the pressure
reconstruction.

As shown in equation (13), εnA is a result of the weighted
summation of the truncation errors εt(l,n) and of εt(l,r) as well as
the spatial integration of pressure gradient error ε∇p. Since the
weights |R(l,n)/Nn| ≪ 1 and |R(l,r)/Nr| ≪ 1, as long as the
truncation errors and pressure gradient errors are random and
homogeneously distributed, the final weighted summation, i.e.
εnA should be a small finite value. This expectation is verified
from figure 8 as well.

4.4. Performance of pressure reconstruction methods with
test case A, i.e. 40% random pressure gradient noise
superimposed over the entire domain

Four different methods are used for pressure reconstruction
from the pressure gradient fields embedded with the 40% ran-
dom noise over the entire domain (i.e. test Case A). One
method is the solution of the Poisson equation for pressure
using a second order central difference method (similar as
Ghaemi et al [58]; Ghaemi and Scarano [59]; Villegas and
Diez [60]) with Neumann boundary condition for all bound-
ary points except the lower left corner where a fixed reference
pressure value (pref = PDNS (1,1)) is prescribed. This method
is referred to as ‘Poisson NBC’ in the following discussion.
Another variant of the Poisson equation method is ‘Poisson
DBCParallel Ray’, which uses the pressure values on all bound-
ary points obtained by the rotating parallel ray omnidirec-
tional integration as the Dirichlet boundary conditions. The
other two methods are variations of the omnidirectional integ-
ration, with the first one being the rotating parallel ray omni-
directional integration method [15], and the second one the
circular virtual boundary omnidirectional integration method
[10, 12]. Same as the implementation in the Poisson NBC
equation approach, the reference pressure during the imple-
mentation of the omnidirectional pressure reconstructions is
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Table 1. Summary of under-sampled grids for integration truncation error evaluation.

Sampling
sequence

Number of grid nodal
points (Nk×Nk)

Domain length
(Lx)

Domain height
(Ly)

Horizontal grid
size (∆x)

Vertical grid
size (∆y)

Nodimensional
grid size (h∗)

1 253 × 253 1.546 1.546 6.14 × 10−3 6.14 × 10−3 1.00
2 127 × 127 1.546 1.546 1.23 × 10−2 1.23 × 10−2 2.00
3 85 × 85 1.546 1.546 1.84 × 10−2 1.84 × 10−2 3.00
4 64 × 64 1.546 1.546 2.45 × 10−2 2.45 × 10−2 4.00
5 43 × 43 1.546 1.546 3.68 × 10−2 3.68 × 10−2 6.00
6 37 × 37 1.546 1.546 4.30 × 10−2 4.30 × 10−2 7.00
7 29 × 29 1.546 1.546 5.52 × 10−2 5.52 × 10−2 9.00

Figure 7. Average of the absolute error normalized by the standard deviation of the DNS isotropic turbulence pressure as a function of the
normalized grid size to show the influence of the integration truncation error on the pressure reconstruction accuracy. Without the embedded
noise in the pressure gradient, the accuracy of the parallel ray omnidirectional integration is proportional to about the second order of the
grid size, i.e. the same order of the trapezoidal method used to perform the line integrations. With noise at an amplitude of 40% of(
|∇p|DNS

)
max

embedded in the entire domain, the accuracy is proportional to about the first order of the grid size.

set to be the DNS pressure at the lower left corner of the
flow field.

The error in the reconstructed pressure is computed as the
difference between the reconstructed pressure and the exact
(i.e. DNS) pressure:

εij = p̃ij− pij (30)

with its standard deviation defined as

εstd =

√√√√ 1
ImaxJmax− 1

Imax∑
i=1

Jmax∑
j=1

(εij− εij)
2 (31)

where (and throughout the paper) the overbar represents the
spatial averaging over the entire domain for a specific recon-
structed pressure realization (i.e. for a specific instant of time).

Figure 9 presents the cumulative average of the standard
deviation error and the maximum and minimum error bounds
found for the pressure reconstructed using the aforementioned
integration methods. In figure 9, all quantities are normalized

by the standard deviation of the DNS pressure pstd obtained in
the original 256 × 256 sample planar domain. Fromfigure 9(a),
it can be seen that there exists a significant difference between
the error bounds for the omnidirectional integration methods
and that of the Poisson method with Neumann boundary con-
dition (Poisson NBC). For the omnidirectional methods, the
errors are always bellow 0.25 while the error for the Poisson
NBC exceeds 2.67, about one order of magnitude higher. Also,
the average errors for the omnidirectional integration meth-
ods are below 0.17 and the average error for Poisson NBC
is about 0.86. To further discern the performance difference
between the two omnidirectional integrationmethods investig-
ated, a zoomed-in version of figure 9(a) is shown in figure 9(b),
from which the improvement in performance from the circu-
lar virtual boundary omnidirectional integration method to the
rotating parallel ray omnidirectional integration method can
be clearly seen. It is important to note that, as shown in Liu
et al [15], the performance of the rotating parallel ray depends
on the rotation angle increment ∆α and the distance between
rays ∆d∗ (normalized by the grid spacing). For the isotropic
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Figure 8. The evolution of the boundary pressure error convergence for the pressure error εqn and the error components εnA, and εqnB at
representative iteration rounds. The left column shows the error evolution for the isotropic turbulence test case without noise added. The
right column shows the error evolution for the test case with 40% noise added to the entire pressure gradient field (test Case A). For both
cases, εref = 0. Please note the y-axis scales for q= 1 and 2 on the left column are different from the rest plots in that column. Also please
note, the initial error distributions ε1n for both testing cases are the same because of the zero-boundary value initialization for both cases.

turbulence DNS data investigated in this work, the optimal
pressure reconstruction result is obtained when∆d∗ = 0.4and
∆α= 0.20 for the rotating parallel ray pressure reconstruction
method.

Figure 9(b) also highlights the benefit of using the rotating
parallel ray omnidirectional integration to generate Dirichlet
boundary conditions that are then applied to the Poisson

equation for pressure (Poisson DBCParallel Ray). It can be seen
from figure 9(b) that using the Dirichlet boundary conditions
achieved by the optimal parallel ray omnidirectional integra-
tion, the Poisson DBC method performs better than the virtual
boundary omnidirectional integration method, while it is still
slightly outperformed by the optimal parallel ray omnidirec-
tional integration method by 0.2% with respect to pstd. For

14



Meas. Sci. Technol. 31 (2020) 055301 X Liu and J R Moreto

Figure 9. Cumulative average error of the reconstructed pressure for 1000 realizations with noise at an amplitude of 40% of
(
|∇p|DNS

)
max

superimposed on the entire domain of a sample isotropic turbulence pressure gradient field. Convergence is achieved after 500 simulations
for the Poisson equation method with the Neumann boundary condition (Poisson NBC). For the omnidirectional methods, the error
convergence is achieved after about 100 simulations. (a) Comparison of the cumulative average error for the pressure reconstruction
methods tested; (b) zoomed-in plot showing the details of the comparison among the methods tested.

many experimental applications it is not possible to obtain the
pressure at the domain boundaries to prescribe the Dirichlet
boundary condition. Pan et al [45], summarizes 16 applica-
tions of the Poisson method for the pressure measurement in
PIV experiments; only one uses Dirichlet boundary condition
[61], two make use of Neumann boundary condition [60, 62]
and the others use mixed boundary conditions [21, 27, 36,
etc]. To overcome this limitation, one can use the omnidirec-
tional integration to obtain the pressure at the boundary points
and then prescribe it as Dirichlet boundary conditions to the

Poisson equation solver for pressure reconstruction over the
rest of the domain.

The simulation results support the theoretical analysis
presented in section 3. The propagated random error from the
pressure gradient to the reconstructed pressure is significantly
lower for the omnidirectional methods in comparison with the
Poisson NBC approach. Table 2 summarizes the average error,
the standard deviation of the error and the maximum error
for the 1000 pressure field realizations reconstructed from the
corresponding pressure gradient field of a DNS of isotropic
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Table 2. Average error and error standard deviation for 1000 pressure reconstruction realizations from the DNS isotropic turbulence
pressure gradient field embedded with random noise over the entire domain with an amplitude of 40% of

(
|∇p|DNS

)
max

.

Method 1
1000

1000∑
n=1

(
εstd
pstd

)
n

(
εstd
pstd

)
std

(
εstd
pstd

)
max

Rotating parallel ray ∆d∗ = 0.4, ∆α= 0.2◦ 0.149 0.015 0.231
Rotating parallel ray ∆d∗ = 0.4, ∆α= 3.0◦ 0.170 0.014 0.249
Circular virtual boundary integration 0.154 0.015 0.232
Poisson equation DBCparallel ray 0.151 0.015 0.230
Poisson equation NBC 0.854 0.406 2.678

Figure 10. Comparison of pressure reconstruction error with respect to random noise levels from 1% to 10% added to the pressure gradient
field. At each noise level, 100 uncorrelated noise distributions are used to compute the average error and the standard deviation. The average
error and the standard deviation of the error increase as the noise level increases for all methods, however it is clear that the omnidirectional
integration is less affected by the noise than the Poisson equation method with Neumann boundary conditions. (a) Result for Poisson NBC
and omnidirectional integration methods; (b) zoomed-in plot showing the pressure error of the omnidirectional integration methods.

turbulence with embedded random noise. As can be seen from
table 2, the error for the Poisson NBC approach is one order
of magnitude higher than the omnidirectional methods.

To investigate the effect of the noise level on the accur-
acy of the pressure reconstruction methods, we evaluate
the error propagation from the pressure gradient fields with
added random noise at amplitudes varying from 1% to 10%
of the maximum magnitude of the DNS pressure gradient,
i.e. a relative noise level range close to that can be seen in
actual experiments [10]. A total of 100 statistically inde-
pendent random noise distributions are generated for each
noise level investigated using distinct seed numbers. The pres-
sure is then reconstructed and compared with the exact pres-
sure. The average pressure errors over the 100 realizations

εstd =
1

100

100∑
n=1

(
εstd
pstd

)
n

varying with the added noise level for

different reconstruction methods are shown in figure 10.
The error bars shown in this figure represent the±1.0σ ranges
of the quantity εstd. It can be seen that the average pressure
error and its standard deviation using Poisson NBC approach
are much larger than those of the omnidirectional integration
methods for all noise intensities simulated. As shown in
figure 10, it can be seen that for all methods tested, the error
on the reconstructed pressure increases almost linearly with
the noise levels (1%–10%) embedded in the pressure gradient
field. This trend is in agreement with Charonko et al [34].
When the embedded noise level increases, the magnitude of
the pressure reconstruction error also increases, with the pres-

sure error for Poisson NBC approach increasing at a higher
rate compared to the omnidirectional approaches.

It is important to note that, as mentioned earlier, the accur-
acy for the rotating parallel ray omnidirectional integration
method depends on the number of rays used, which is gov-
erned by the choice in the parameter space (∆α,∆d∗). As
shown in figures 9(b) and 10, a dense parallel ray represen-
ted by the parameter values of ∆α= 0.2◦ and ∆d∗ = 0.4 is
more favorable in providing pressure reconstructed result with
higher accuracy than the less dense parallel ray as represented
by the parameter values of ∆α= 3.0◦ and ∆d∗ = 0.4. This is
in agreement with equation (24) which predict low error for
pressure at the inner points with the increase of the number of
rays (Nijk). Please note, as shown in Liu et al [15], after a cer-
tain optimal value, further increase of the parallel ray density
may deteriorate the pressure reconstruction accuracy because
of the more numerical errors involved in the calculation.

To intuitively understand the effect of the pressure recon-
struction performance, figure 11 presents comparisons of the
reconstructed pressure p̃, the error of the reconstructed pres-
sure εij and the probability density function (PDF) distribu-
tion of εij obtained by using different pressure reconstruction
methods for their corresponding worst (i.e. the largest εstd)
and best (i.e. the least εstd) cases of performance among the
1000 pressure field realizations reconstructed from the pres-
sure gradient field with the 40% embedded random error. It
can be seen that, for most representative cases, even with the
40% embedded random, the essential features of the original
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Figure 11. Representative results with the maximum and minimum
εstd error distributions based on the 1000 pressure realizations
reconstructed using parallel ray omnidirectional integration, circular
virtual boundary omnidirectional integration, Poisson equation
method with Dirichlet boundary condition (generated by the parallel
ray omni-integration) and the Poisson equation method with
Neumann boundary condition. Within each case, the first column
shows the reconstructed pressure distributions, the second column
shows the pressure error distributions, and the last column shows the
pressure error probability density function corresponding to each
pressure distribution sample.

DNS pressure distribution (as shown in figure 6(a)) can still
be successfully captured by most of the pressure reconstruc-
tion methods, except the worst case scenario for Poisson NBC

(figure 11(v)), where the reconstructed pressure distribution
failed in capturing the essential patterns for the original DNS
pressure distribution. The pressure error PDF profiles for both
the best and worst cases of performance of the three meth-
ods (i.e. parallel ray omnidirectional integration, circular vir-
tual boundary omnidirectional integration, Poisson equation
method with parallel ray generated Dirichlet boundary condi-
tion) are very similar. Consistent with themean and fluctuation
pressure distributions, for both the best and the worst cases,
the error range of the Poisson equation method with Neumann
boundary condition are much larger (about 2 times larger for
the best case, and 30 times larger for the worst case) than those
associated with other methods, as shown in the PDF plots in
figure 11.

To compare the behaviour of the error propagation in wave
number space, as shown in figure 12, we compute the power
spectrum density of the reconstructed pressure from the 1000
realizations of the 40% noise embedded isotropic turbulence
DNS data using the rotation parallel ray method (RPR,∆d∗ =
0.4,∆α= 0.2◦), and compare it with those using the circular
virtual boundary (CVB) omnidirectional method, the Poisson
equation with Dirichlet boundary condition based on bound-
ary pressure data provided by RPR (∆d∗ = 0.4,∆α= 0.2◦),
the RPR with coarse ray density (∆d∗ = 0.4,∆α= 3.0◦);
and the Poisson equation with Neumann boundary condi-
tion, respectively, with the DNS pressure spectrum used as
a ground-truth for comparison. Consistent with the discus-
sion regarding figure 9, the rotation parallel ray method with
dense ray density (RPR, ∆d∗ = 0.4,∆α= 0.2◦) shows the
best performance among the methods compared. The Pois-
son NBC method has the largest deviation across the entire
wavenumber space, especially at the high wavenumber space.
When we use the boundary pressure data provided by RPR
(∆d∗ = 0.4,∆α= 0.2◦) as a Dirichlet boundary condition for
the Poisson equation method, same power spectrum dens-
ity distribution with that of RPR (∆d∗ = 0.4,∆α= 0.2◦) is
achieved, as shown in figure 12(b). Overall the reconstructed
pressure using omnidirectional integrationmethods (both RPR
and CVB) agree quite well with the DNS pressure spectrum
at low wavenumber space. However, considerable deviation
from the DNS pressure spectrum occurs at the high wave num-
ber space, indicating for most part, the error propagation for
the omnidirectional methods occur locally. Especially, when
coarse ray density (∆d∗ = 0.4,∆α= 3.0◦) is used, the devi-
ation at high wavenumber space become deteriorated.

4.5. Performance of pressure reconstruction methods with
test cases B, C and D

To further investigate the performance of the pressure recon-
struction methods, in addition to test case A discussed in
section 4.4, we also examined three more test cases B, C,
and D based on their corresponding 1000 independent real-
izations, respectively. The error distributions introduced in
these three test cases are described in section 4.1. Perform-
ance results in terms of cumulative average error of recon-
structed pressure obtained with these three testing cases are
summarized in figure 13. As shown from the figure, for all
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Figure 12. Comparison of the power spectral density of the reconstructed pressure from the 1000 realizations of the 40% noise embedded
isotropic turbulence DNS data using the rotation parallel ray method (RPR, ∆d/∆h= 0.4,∆α= 0.2◦) with those using (a), the circular
virtual boundary (CVB) omnidirectional method; (b), the Poisson equation with Dirichlet boundary condition (Poisson DBC) based on
boundary pressure data provided by RPR (∆d/∆h= 0.4,∆α= 0.2◦); (c), RPR with coarse ray density (∆d/∆h= 0.4,∆α= 3.0◦); and
(d) the Poisson equation with Neumann boundary condition, respectively. The spectrum of the DNS pressure is used as a ground-truth for
comparison.

three test cases, namely, case B, 40% random noise superim-
posed to the central stripe and no noise added elsewhere in the
domain; Case C, 40% random noise superimposed to the cent-
ral stripe and 5.0% noise added to the rest of the domain; and
Case D, Gaussian noise superimposed to the entire domain,
the performance ranks for different pressure reconstruction
methods are consistent, with the rotation parallel ray omni-
directional integration method (∆d∗ = 0.4,∆α= 0.2◦) being
the practical method of choice with the best pragmatic-
ally achievable accuracy in terms of averaged error standard
deviation (εstd\pstd)avg. Poisson equation exhibits almost the
same accuracy performance if the boundary pressure values
obtained by parallel ray (∆d∗ = 0.4,∆α= 0.2◦) are used as
Dirichlet boundary condition for the Poisson solver. As an
ideal test of the performance limit, when the DNS boundary
pressure serves as Dirichlet boundary condition (which is not
available in practice), the Poisson solver shows the best ideal
performance in reconstructed pressure accuracy. However, if
the DNS boundary pressure is used to replace the last round
of iteration-obtained boundary pressure values for the parallel
ray method (∆d∗ = 0.4,∆α= 0.2◦), the performance is not
as good as that of the Poisson DBC (with exact DNS values).
The reason for that is for the parallel ray omnidirectional

integration (or other omnidirectional approach in general), the
boundary pressure values, no matter whether they are obtained
from converged iteration, or from the assigned exact DNS val-
ues like this test case, provide only a basis for the start values
of the last round of omnidirectional integration (mainly for
determining the pressure values at the inner nodal points). The
boundary points at the end of the integration on solid boundar-
ies are open for receiving new values obtained from the omni-
directional integration. Along with the omnidirectional integ-
ration process, an error of εnA is inevitably generated as indic-
ated in equations (13) and (18), and will be carried to the pres-
sure distributions over the entire domain, including the bound-
ary pressure error as defined in equation (18) and the pressure
error at inner nodal points as defined in equations (26) and
(27). In contrast, when the DNS pressure serves as the Dirich-
let boundary condition for the Poisson solver, the boundary
pressure value is set to be rigid and fixed, thus ensuring accur-
ate match on the boundaries, and as a result, rendering the
least theoretically achievable error for the reconstructed pres-
sure. This explanation is in agreement with supporting evid-
ence shown in figures 16 and 17, which will be discussed later.

As discussed in section 4.4, a popular practice regarding
boundary pressure value prescription for Poisson equation
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Figure 13. Cumulative average error of pressure reconstructed
using different methods from 1000 realizations of pressure gradient
fields with (a) 40% random noise superimposed to the central stripe
and no noise added elsewhere in the domain; (b) 40% random noise
superimposed to the central stripe and 5.0% noise added to the rest
of the domain. (c) Gaussian noise superimposed to the entire
domain.

pressure reconstruction is to use the so-called mixed bound-
ary conditions [21, 27, 36, etc], where Bernoulli equation is
usually used to provide Dirichlet boundary condition in the
free stream region on one side of the domain while Neumann
boundary condition is used on other boundary sides. To verify
the effectiveness of this practice, we use the DNS pressure
on top of the domain as Dirichlet boundary condition and
applying Neumann boundary condition on other sides of the
domain, i.e. Poisson DBCtop_exact as shown in figure 13. As
can be seen in figure 13, this practice (Poisson DBCtop_exact)
only outperforms the least accurate method of Poisson NBC,
for which Neumann boundary conditions are applied to all
boundary points (except one point at the lower-left corner

serves as an anchor to provide reference pressure). A summary
of the statistics about the accuracy performance for different
pressure reconstruction methods are listed in tables 3–5.

To achieve an intuitive understanding of the perform-
ance of the two primary pressure reconstruction meth-
ods (i.e. parallel ray omnidirectional integration with
∆d∗ = 0.4,∆α= 0.2◦ and Poisson equation method with
the Dirichlet boundary condition furnished by the Parallel
Ray with ∆d∗ = 0.4,∆α= 0.2◦), figure 14 presents the min-
imum and maximum εstd error distributions selected from the
1000 reconstructed pressure realizations as representative res-
ults for pressure reconstructed from test Case B (40% random
noise superimposed to the central stripe and no noise to other
places) and Case C (40% random noise superimposed to the
central stripe and 5.0% noise added to the rest of the domain),
respectively. As shown in figure 14, for both test cases, when
εstd is minimum, pressure error values on both top and bottom
outsides of the central error embedded region are roughly bal-
anced. However, for the situation with maximum εstd, large
pressure error with opposite signs exists across the central
region.

To quantify the behaviour about the pressure error propaga-
tion from the error-embedded central region to other places
within the domain, we define several new quantities, including
the ensemble mean, standard deviation and root mean square
(rms) distributions based on errors in the reconstructed pres-
sure, as follows:

(εij)n = (p̃ij− pij)n (32)

(εij)n =
1
N

N∑
n=1

(εij)n (33)

εijstd =

√√√√ 1
N− 1

N∑
n=1

(
(εij)n− (εij)n

)2
(34)

εijrms =

√√√√ 1
N− 1

N∑
n=1

∣∣(εij)n∣∣2 (35)

εj =
1
Imax

Imax∑
i=1

(εij)n (36)

εjstd =
1
Imax

Imax∑
i=1

εijstd (37)

εjrms =
1
Imax

Imax∑
i=1

εijrms (38)

where n is a dummy variable representing any arbitrary
instance of reconstructed pressure realization and N being the
total number of realizations. For all the testing cases discussed
below, N= 1000.
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Table 3. Error statistics for pressure reconstructed using different methods from 1000 realizations of pressure gradient field with 40%
random noise superimposed to the central stripe and no noise added elsewhere to the domain.

Error statistics RPR Poisson DBC RPR Poisson NBC RPR Exact BC Poisson DBC exact Poisson DBC exact top

(εstd\pstd)min 0.0559 0.0563 0.0636 0.0528 0.0520 0.0652
(εstd\pstd)avg 0.0825 0.0830 0.1876 0.0695 0.0635 0.1575
(εstd\pstd)max 0.1771 0.1777 0.5518 0.1275 0.0985 0.5040
(εstd\pstd)std 0.0175 0.0175 0.0890 0.0093 0.0054 0.0614

Table 4. Error statistics for pressure reconstructed using different methods from 1000 realizations of pressure gradient field with 40%
random noise superimposed to the central stripe and 5.0% noise added to the rest of the domain.

Error statistics RPR Poisson DBC RPR Poisson NBC RPR Exact BC Poisson DBC exact Poisson DBC exact top

(εstd\pstd)min 0.0610 0.0615 0.0769 0.0578 0.0556 0.0792
(εstd\pstd)avg 0.0865 0.0870 0.2495 0.0728 0.0668 0.1949
(εstd\pstd)max 0.1844 0.1870 0.7524 0.1263 0.0935 0.4715
(εstd\pstd)std 0.0167 0.0168 0.1121 0.0089 0.0053 0.0744

Table 5. Error statistics for pressure reconstructed using different methods from 1000 realizations of pressure gradient field with Gaussian
noise superimposed to the entire domain.

Error statistics RPR Poisson DBC RPR Poisson NBC RPR Exact BC Poisson DBC exact Poisson DBC exact top

(εstd\pstd)min 0.0441 0.0444 0.0759 0.0406 0.0382 0.0677
(εstd\pstd)avg 0.0551 0.0557 0.3020 0.0464 0.0439 0.2282
(εstd\pstd)max 0.0813 0.0806 0.8632 0.0570 0.0553 0.7580
(εstd\pstd)std 0.0056 0.0057 0.1380 0.0028 0.0022 0.1062

Note: RPR, rotation parallel ray (∆d∗ = 0.4,∆α= 0.2◦); Poisson DBC RPR, Poisson equation with Dirichlet boundary condition based on rotation parallel
ray (∆d∗ = 0.4,∆α= 0.2◦) boundary pressure data; Poisson NBC, Poisson equation with Neumann boundary condition (with the same reference pressure
point as other methods); RPR exact BC, rotation parallel ray (∆d∗ = 0.4,∆α= 0.2◦) with DNS pressure as boundary pressure values; Poisson DBC exact,
Poisson equation with DNS pressure as Dirichlet boundary condition; Poisson DBC exact top, Poisson equation with DNS pressure as Dirichlet boundary
condition on the topside of the domain and Neumann boundary condition applied to other sides of the domain.

The ensemble mean (εij)n and the ensemble standard devi-
ation εijstd distributions of reconstructed pressure using the
rotation parallel ray omnidirectional integration (with ∆d∗ =
0.4,∆α= 0.2◦) and the Poisson equation method (with con-
verged boundary pressure values generated by the former
method as the Dirichlet boundary condition) are compared in
figure 15, in the context of their applications to test cases A
(40% random error on entire domain), B (40% random noise
superimposed to the central stripe and no noise added else-
where in the domain), C (40% random noise superimposed
to the central stripe and 5.0% noise added to the rest of the
domain) and D (Gaussian error on entire domain). As can be
seen from figure 15, there is virtually no difference between
the two pressure reconstruction methods for the four cases
investigated, indicating that as long as the converged bound-
ary pressure values are available, the Poisson DBC will gener-
ate reconstructed pressure distribution with the same accuracy
level as its boundary value feeder, i.e. the parallel ray integ-
ration methods. The overall low magnitude (< 0.01pstd, i.e.
< 0.002|p|max) of (εij)n shown in figure 15 is due to averaging
of the spatial pressure distribution (εij)n = (p̃ij− pij)n over
the 1000 realizations, which minimizes the influence of the
pressure gradient error terms in equations (26) and (27).
However, it seems that the truncation errors have been

persistently retained through the averaging process, forming
sporadic high error concentrations (∼ 0.05pstd, i.e. 0.012|p|max
inmagnitude) which are coincident with the areas of high pres-
sure gradient (comparing figures 15 and 6(b)) in the domain.

As shown in figures 15(a) and (b), for cases B and C,
although the spatial distribution of the ensemble standard devi-
ation εijstd successfully reflects the main feature of embedded
pressure gradient error distribution pattern for which high
error region appears at the central stripe of the domain, the
asymmetric distribution of εijstd with respect to the central
high error stripe within the domain clearly indicates that
there exists an error propagation bias pattern associated with
the pressure reconstruction methods investigated. Consider-
ing the Poisson DBCparallel ray method adopts the converged
boundary pressure value generated by the parallel ray method,
this error propagation bias pattern is presumably due to the
error propagation behaviour through the boundary pressure
points during the implementation of the parallel ray omni-
directional integration. Moreover, because the reference pres-
sure is anchored at the lower left corner of the domain, the
error propagation in terms of standard deviation εijstd has the
smallest magnitude in the region surrounding the reference
point, and gradually increases its value when the point of
interest is getting further away from the reference point, thus
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Figure 14. Representative error distributions with maximum and minimum εstd selected from the 1000 pressure realizations reconstructed
using parallel ray omnidirectional integration with ∆d∗ = 0.4, ∆α= 0.2◦ (the first column of plots) and Poisson equation method with
Dirichlet boundary condition generated by the parallel ray omni-integration with ∆d∗ = 0.4,∆α= 0.2◦ (the second column of plots) for
(a) 40% random noise superimposed to the central stripe and no noise added elsewhere in the domain; (b) 40% random noise superimposed
to the central stripe and 5.0% noise added to the rest of the domain.

forming a basin type of error propagation pattern at the area
below the horizontal error-embedded stripe (figures 15(a) and
(b)). Above the stripe, εijstd reaches a higher error plateau
(∼ 0.10pstd, i.e. 0.02|p|max), with another basin type of error
propagation pattern formed at regions away from the central
stripe. Please note that similar basin type distribution patterns
for measured Cprms obtained by using virtual boundary omni-
directional integrationmethod are also found in the experiment
by [12], figures 5(g) and (h) there, as well as figure 18 in

this paper about a turbulent shear layer flow past a cavity. Thus
to some extent, the basin type distribution patterns for εijstd as
seen in cases B and C can be viewed as a replica of the actual
experiment.

For both Case A (random error entire domain) and Case D
(Gaussian error entire domain), there is also a basin type error
propagation pattern occurring within the domain, with the ref-
erence point serving as the lowest error point within the basin,
and the rest of the entire domain serving as a quarter basin
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Figure 15. Comparison of mean (εij)n and standard deviation εijstd error distributions of reconstructed pressure using rotation parallel ray
omnidirectional integration with ∆d∗ = 0.4,∆α= 0.2◦ (the first column of plots within each frame) and Poisson equation method with
Dirichlet boundary condition generated by the parallel ray omni-integration with ∆d∗ = 0.4,∆α= 0.2◦ (the second column of plots with
each frame) for (a) Case B, 40% random noise superimposed to the central stripe and no noise added elsewhere in the domain; (b) Case C,
40% random noise superimposed to the central stripe and 5.0% noise added to the rest of the domain; (c) Case D, Gaussian error on entire
domain; and (d) Case A, 40% random error on entire domain.

with gradually elevated standard deviation error εijstd at loca-
tions away from the basin center, as shown in figures 15(c) and
(d), respectively. Because there is no central stripe within the
domain, the basin now has a bigger radius compared to that
shown in figures 15(a) and (b).

To verify the role that the boundary pressure value plays
in determining the error propagation pattern in terms of the
ensemble standard deviation εijstd distribution, we use DNS
boundary pressure value as the converged boundary pres-
sure value for rotation parallel ray omnidirectional integration
(∆d∗ = 0.4,∆α= 0.2◦) for test cases A, B, C and D. As a
comparison, we also use the DNS boundary pressure value
as the Dirichlet boundary condition for the Poisson equation
pressure reconstruction implementation for these test cases.
Because exact pressure values are used on all boundary points,
the εijstd distribution becomes more symmetric as shown in

figure 16. This is a sharp contrast in comparison with figure
15. The asymmetric pattern of εijstd distribution with respect
to the central stripe as shown figures 15(a) and (b) now com-
pletely disappears. The basin type pattern also disappears in
the test cases shown in figure 16.

To facilitate comprehension of the influence of boundary
pressure condition and the superimposed pressure gradient
error distribution on the reconstructed pressure error propaga-
tion using different methods, figure 17 compares the hori-
zontally averaged ensemble standard deviation εjstd , root mean
square εjrms , and mean εj error distributions using two meth-
ods, i.e. the rotation parallel ray omnidirectional integration
(∆d∗ = 0.4,∆α= 0.2◦) and the Poisson equation Dirichlet
boundary condition, with boundary pressure values either (a)
generated by rotation parallel ray omnidirectional integration
(∆d∗ = 0.4,∆α= 0.2◦), or (b) set by the exact DNS boundary
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Figure 16. Distribution of ensemble standard deviation of reconstructed pressure error εijstd based on DNS boundary pressure value used as,
the first column of plots, converged boundary pressure value for rotation parallel ray omnidirectional integration (∆d∗ = 0.4,∆α= 0.2◦)
and, the second column of plots, Dirichlet boundary condition for the Poisson equation pressure reconstruction method. (a) and (b), test
Case B, 40% random noise superimposed to the central stripe and no noise added elsewhere in the domain; (c) and (d) test Case C, 40%
random noise superimposed to the central stripe and 5.0% noise added to the rest of the domain; (e) and (f) test Case D, Gaussian error on
entire domain; and (g) and (h) test Case A, 40% random error on entire domain.

pressure, respectively, for testing cases A (40% all), B (stripe,
i.e. 40% error at central stripe), C (mixed, i.e. 40% error at
central stripe + 5% elsewhere) and D (Gaussian) embedded
error schemes. As can be seen from figure 17, the plots for εjstd
and εjrms are very similar. The reason is that, as shown in fig-
ure 15 and discussed before, (εij)n is small (< 0.01pstd) and
therefore negligible. Therefore the curves for εjstd and εjrms are
almost the same.

As shown in figure 17(a), the superimposed pressure gradi-
ent error at the central stripe of the domain results in a hump for
the vertical distribution of εjstd along the y-direction (figure 17
curves a, e, b and f). In front of the hump, the εjstd curve appears
as a valley while behind the hump, there is a plateau. The step
difference in εjstd (∼ 0.075pstd, i.e. ∼ 0.018|p|max) between
the plateau and the valley for case B (stripe, i.e. 40% error
at central stripe) is reduced to ∼ 0.05pstd (i.e. ∼ 0.012|p|max)
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Figure 17. Comparison of horizontally averaged standard deviation εjstd , root mean square εjrms , and mean εj error distributions of
reconstructed pressure using two methods, i.e. rotation parallel ray omnidirectional integration (∆d∗ = 0.4,∆α= 0.2◦) and Poisson
equation Dirichlet boundary condition, with boundary pressure values generated by (a) rotation parallel ray omnidirectional integration
(∆d∗ = 0.4,∆α= 0.2◦) and (b) the exact DNS pressure, respectively, for testing cases A (40% all), B (stripe, i.e. 40% error at central
stripe), C (mixed, i.e. 40% error at central stripe + 5% elsewhere) and D (Gaussian) embedded error schemes.

for Case C (mixed, i.e. 40% error at central stripe + 5% error
elsewhere), indicating the benefits of pressure gradient error
cancelation due to the existence of the 5% error region in Case
C. If the pressure gradient is homogeneously superimposed
with 40% of

(
|∇p|DNS

)
max

random noise, i.e. test Case A,
the εjstd curve is slanted with an average magnitude difference
of ∼ 0.05pstd, (i.e. ∼ 0.012|p|max) within the domain range.
Similar behaviour is observed for Case D, i.e. the Gaus-
sian pressure gradient error distribution, where a much

smaller average magnitude difference of ∼ 0.0125pstd
(i.e. ∼ 0.003|p|max) across the domain for the εjstd curve is
observed due to relatively smaller magnitude of pressure
gradient error introduced by the Gaussian method (with zero
mean and standard deviation of 8.5% of

(
|∇p|DNS

)
max

). The
horizontally averaged ensemble mean error εj again confirms
that across the domain, εj < 0.01pstd, i.e.< 0.002|p|max for all
cases tested, consistent with the discussion before regarding
(εij)n which is shown in figure 15.
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Figure 18. Mean and rms pressure distributions obtained using the circular virtual boundary omnidirectional integration (abbreviated as
CVB), the rotational parallel ray omnidirectional integration with ∆d∗ = 0.4,∆α= 0.2◦(RPR), the Poisson equation method with parallel
ray generated Dirichlet boundary condition (DBC) and the Poisson equation method with Neumann boundary condition (NBC) pressure
reconstruction methods. A total of 9994 sequentially obtained instantaneous realizations of pressure gradient field are involved in the
pressure reconstruction for a turbulent shear layer flow over a 2D open cavity at Reynolds number of 4× 104 based on the cavity length of
38.1 mm and the free stream speed of U∞ = 1.20 m s−1.

As shown in figure 17(b), if DNS pressure is used as the
boundary pressure value for the pressure reconstruction, both
εjstd and εjrms curves become more symmetric. Please note this
is only an ideal situation which is unavailable in real practice.

4.6. Performance of different approaches with experimental
data

To verify the performance of the pressure reconstructionmeth-
ods in processing experimental data, the methods tested in sec-
tion 4.4 are also applied to pressure reconstruction from the
measured pressure gradient field database for a turbulent shear
layer flow over an open cavity [3, 12]. The results are com-
pared in terms of mean and rms pressure distributions (figure
18) as well as probability density function profiles of pressure
fluctuations at selected locations in the shear layer (figure 19).
The experiment regarding the turbulent cavity shear layer flow
has been described in detail in Liu andKatz [3, 12]. A turbulent
boundary layer with a shape factor of 1.70 separates from the
leading edge of a 2-D open cavity, forming a turbulent shear
layer over the cavity. Time-resolved planar PIV data, sampled
at 4500 frames per second, have been obtained at a Reynolds
number of 4.0 × 104 based on the cavity length of 38.1 mm and
the free stream speed ofU∞ = 1.20m s−1. The pressure gradi-
ent field has been obtained based on the Lagrangian acceler-
ation measurement, as discussed in section 2.1. A sample of
9994 sequentially obtained instantaneous realizations of pres-
sure gradient field with a field of view of 25 × 25 mm located
immediately upstream of the cavity trailing edge are utilized in
the current study to compare the pressure reconstruction per-
formance.

From figure 18, it can be seen that, similar to the perform-
ance comparison results based on the embedded error in the

isotropic turbulence discussed in section 4.4, for the experi-
mental data, except the Poisson equation NBC approach, the
performance for the other three pressure reconstruction meth-
ods evaluated, i.e. the the circular virtual boundary omnidirec-
tional integration, the rotational parallel ray omnidirectional
integration (∆d∗ = 0.4,∆α= 0.2◦), and the Poisson equation
method with parallel ray generated Dirichlet boundary condi-
tion can all capture the essential features of the mean and rms
pressure distributions if compared with the corresponding res-
ults in Liu andKatz [12]. In contrast, the Poisson equationwith
Neumann boundary condition fails to capture the pressure field
correctly.

To further verify the above results, figure 19 shows the
comparison of the probability density function profiles for the
fluctuation pressure obtained by these four pressure recon-
struction methods at representative sample locations L1 (at
the free stream region), L2 (in the shear layer) and L3 (in
the cavity recirculation region) as indicated in figure 18. It
can be seen that, except the result obtained by the Pois-
son equation with Neumann boundary condition, the fluctu-
ation pressure range predicted by the other three methods
agree with each other. The mismatch at the tails of the pro-
files shown in figures 19(d)–(f) is presumably due to lack
of convergence due to the rare flow events corresponding to
those fluctuation range. In contrast, the Poisson equation with
Neumannboundarycondition once again brings a significantly
over-predicted pressure fluctuation range, which is unrealistic.

5. Conclusion

Characterization of the accuracy performance and the error
propagation properties of the PIV pressure reconstruction
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Figure 19. Comparison of the probability density function profiles for the fluctuation pressure at sample locations L1, L2 and L3 as
indicated in figure 18 for a turbulent shear layer flow over a 2D open cavity at Reynolds number of 4.0 × 104. The pressure data are obtained
by using the circular virtual boundary omnidirectional integration (abbreviated as CVB), the rotational parallel ray omnidirectional
integration with ∆d∗ = 0.4,∆α= 0.2◦ (RPR), the Poisson equation method with parallel ray generated Dirichlet boundary condition
(DBC) and the Poisson equation method with Neumann boundary condition (NBC) pressure reconstruction methods. The right column PDF
profiles are zoomed-in plots for the corresponding left column PDF plots.

methods is of critical importance in understanding their cap-
abilities and limitations. This paper presents for the first time
a comprehensive theoretical analysis and numerical verifica-
tion of the error propagation behaviour from the PIV-based
pressure gradient to the reconstructed pressure by using the
omnidirectional integration methods, and demonstrates the
critical importance of accurate determination of the boundary
pressure values in ensuring the accuracy for the final recon-
structed pressure distribution in an error-embedded turbulent
flow field.

The omnidirectional integration provides an effective
boundary pressure error reduction mechanism through iter-
ation. The error in the boundary pressure value (ε

(q+1)
n )

effectively consists of two parts. One part (εqnB) decreases
in magnitude exponentially at characteristic error decay rate
λn,max(|λn,max|< 1) and eventually vanishes through an itera-
tion process, the other (εnA+ εref) remains a constant of small
magnitude for a given pressure gradient field during the iter-
ation. As a result, the boundary pressure value eventually
converges to a small error characterized by (εnA+
εref). Theoretical analysis based on non-homogeneous
linear recurrence theory supports the above observa-
tion. As long as the pressure gradient error is random

and homogeneously distributed, the spatial integration
and the averaging process will lead to a small final
value in εnA.

The pressure at the inner domain requires only a one-
step calculation after the pressure at boundary points reach a
converged solution. At inner nodal points, the pressure error
depends only on (1) the summation of the truncation error
of integration scheme and (2) the integration of the pressure
gradient error. It does not change in magnitude with boundary
pressure value iteration.

The error propagation analysis shows that increase in
the density of the integration path not only helps expedite
the decrease of the error, but also increase the accuracy of
the final reconstructed pressure. For a domain of 254× 254
nodal points, ∆α≈ 0.1− 0.2◦ and 0.35<∆d∗ < 0.71 are
the recommended ranges for the parallel ray omnidirectional
integration parameter selection.

The accuracy performance of the omnidirectional integ-
ration methods is further investigated using error-embedded
DNS isotropic turbulence in the context of comparison with
Poisson equation based pressure reconstruction methods.
Temporally statistical independent noise at various noise
levels and with different noise spatial distribution schemes are
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superimposed to the pressure gradient fields of the DNS iso-
tropic turbulence for the investigation. Results indicate that
overall the omnidirectional methods give better accuracy of
the reconstructed pressure in terms of both average and stand-
ard deviation errors than the Poisson equation methods with
either entire (except the reference point as Dirichlet) or par-
tial (with top domain side using Dirichlet) Neumann bound-
ary conditions, and the disparity between these two types
of methods becomes more evident when the imposed noise
level increases. Representative results in terms of the average
error of the reconstructed pressure based on 1000 statistically
independent pressure gradient field realizations with a noise
amplitude of 40% of (|∇p|DNS)max is 0.854 ± 0.406 for the
pressure Poisson equation with Neumann boundary condition,
0.154 ± 0.015 for the circular virtual boundary omnidirec-
tional integration method and 0.149 ± 0.015 for the rotating
parallel ray omnidirectional integration method, indicating the
low sensitivity of the omnidirectional integration to random
noise in comparison with the conventional Poisson method. If
the converged boundary pressure values obtained by the rotat-
ing parallel ray are used as the Dirichlet boundary conditions
to feed into the pressure Poisson solver, the nondimensional-
ized average error for the reconstructed pressure by Poisson
is reduced to 0.151 ± 0.015, i.e. the same level of accuracy as
those of the omnidirectional integration approaches, demon-
strating the benefit brought by the omnidirectional integra-
tionmethod in providing correct boundary conditions for Pois-
son solvers. Of the different variations of the omnidirectional
methods, the parallel ray method shows the best performance
capability for all noise distribution schemes tested (includ-
ing random or Gaussian noise on entire domain, and elevated
noise at central stripe of domain), and therefore is the method
of choice.

Comparison of pressure error spectrum based on 40%
noise in entire pressure gradient domain indicates that except
Poission NBC, most error contributions occur at the high
wave number space, implying error propagation remains loc-
ally. This understanding is consistent with the pressure error
distribution analysis based on the DNS data superimposed
with artificial error.

The performance of these pressure reconstruction meth-
ods are also compared for a turbulent shear layer flow over
an open cavity. The comparison results in terms of the mean
and rms pressure distributions as well as the fluctuating pres-
sure PDF distributions at selected locations in the flow field
are consistent with the conclusion based on the DNS simula-
tion data, i.e. the omnidirectional integration methods outper-
forms the Poisson equation approach with Neumann boundary
conditions.

The step difference between the plateau and valley beside
the central error elevation stripe, and the basin type of error
propagation pattern as revealed in standard deviation error
εijstd or rms error εijrms distributions for the error-embedded
simulation realizations represent the major limitations for
omnidirectional integration methods in determining pressure
fluctuation statistics. However, these shortcomings have also
been seen in Poisson equation approaches and therefore are not
unique to the omnidirectional integration methods. Actually

the omnidirectional integration methods as represented by
the parallel ray are capable of minimizing these shortcom-
ings in error propagation. Therefore even with these short-
comings, the omnidirectional integration methods especially
the parallel ray are still the methods of choice. The influ-
ence due to these shortcomings is below 2% of the max-
imum pressure according to current study based on the
DNS data embedded with artificial error. How to further
reduce or completely eliminate these shortcomings require
further investigation.

Please note that in actual PIV velocity fields, errors asso-
ciated with velocity data are spatially correlated. Therefore,
spatially uncorrelated random error superimposed onto the
pressure gradient components may not be a realistic represent-
ation of the type of error that is actually seen in the measured
pressure gradients. In a follow-up work, a better error model
using a filter of definedwidth applied to the random error fields
and rescaled to have the proper magnitude to create a spatial
error covariance similar to that found in PIV measurements
will be incorporated. Simulation of such pressure gradi-
ent error fields with typical characteristics (particularly cov-
ariances) inherited from velocity error will verify whether
such error characteristics cause issues in the reconstructed
pressure field.

Since there are numerous occasions in science and engin-
eering practice that require solution of a scalar potential from
a conservative vector field using Poisson equation, e.g. the
reconstruction of temperature or wavefront from their corres-
ponding error-embedded gradients, the omnidirectional integ-
ration methods, especially the parallel ray omnidirectional
integration method, are readily applicable to those generic
occasions in scalar reconstruction from their error contamin-
ated gradient data.
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Appendix A

Following the definition and the discussion about the error
propagation analysis presented in section 3, and plugging the
pressure decomposition equation (5) and the error definition
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equation (11) into equation (6), we obtain

p̃(q+1/2)
n =

1
Nn

M∑
l=1

[
R(l,n)

(
pl+ εql +

∫ sn

sl

∇p · ds

+

∫ sn

sl

ε∇p · ds
)]

. (39)

Recognizing that

pl+
∫ sn

sl

∇p · ds= pn+ εt(l,n) (40)

where the εt(l,n) is the truncation error due to the numerical
method used for integration along the path connecting point sl
to point sn. Please note the integral sign throughout the paper
is in a sense of numerical integration.

Plugging equation (40) into equation (39), and consid-
ering the relationship between Nn and R(l,n) as defined in
equation (7), we have

p̃(q+1/2)
n = pn+

1
Nn

M∑
l=1

[
R(l,n)

(
εql + εt(l,n) +

∫ sn

sl

ε∇p · ds
)]

.

(41)
Using equation (41), we compute the correction term as

defined in equation (8):

∆
q+1/2
ref = p̃ref−

[
pr+

1
Nr

M∑
l=1

R(l,r)

×
(
εql + εt(l,r) +

∫ sr

sl

ε∇p · ds
)]

. (42)

Applying the correction equation (42) to equation (41),
using the relationship defined in equation (9), we have

p̃(q+1)
n = pn+ p̃ref− pr

+
M∑
l=1

[
R(l,n)
Nn

(
εql + εt(l,n) +

∫ sn

sl

ε∇p · ds
)

−R(l,r)
Nr

(
εql + εt(l,r) +

∫ sr

sl

ε∇p · ds
)]

. (43)

Rearranging equation (43),(
p̃(q+1)
n − pn

)
= (p̃ref− pr)+ εnA+ εqnB. (44)

From the error definitions equations (10) and (11), we can
obtain

εq+1
n = εref+ εnA+ εqnB (45)

where

εnA =
M∑
l=1

[
R(l,n)
Nn

(
εt(l,n) +

∫ sn

sl

ε∇p · ds
)

−R(l,r)
Nr

(
εt(l,r) +

∫ sr

sl

ε∇p · ds
)]

(46)

and

εqnB =
M∑
l=1

(
R(l,n)
Nn

− R(l,r)
Nr

)
εql . (47)

Note that the term εnA does not depend on the iterations.
The first parenthesis on the right-hand side (RHS) of the equa-
tion (46) is composed of the numerical truncation error εt(l,n)
for the pressure integration along the path connecting point sl
to sn and the integral of the embedded error in the pressure
gradient ε∇p along that path. The second parenthesis on the
RHS of the equation (46) is composed of the numerical trun-
cation error εt(l,r) for the pressure integration along the path
connecting point sl to sr and the integral of the embedded error
in the pressure gradient ε∇p along that path. Nn and Nr are the
number of paths involved on the calculation of the pressure
update for the node sn and sr respectively, and are determined
by equation (7).

We can write equation (47) as a weighted summation of the
errors (εl) involved in the operation, where the weights w(l,n)
depend on the scheme of rays connecting the boundary points
(i.e. virtual boundary omnidirectional integration or parallel
ray integration, etc):

εqnB =
M∑
l=1

(w(l,n) · εql ) (48)

where

w(l,n) =
R(l,n)
Nn

− R(l,r)
Nr

(49)

For a given measurement domain, the weight w(l,n)
depends only on the omnidirectional integration method used
in the pressure reconstruction. It does not depend on the noise
level in the measured pressure gradient field. For the rotat-
ing parallel ray method, the weight w(l,n) depends on the ray
density, i.e. the parameter of (∆α,∆d∗). Increasing the ray
density decreases the weight magnitude.

Plugging equation (48) back into equation (45):

εq+1
n =

M∑
l=1

(w(l,n) · εql )+ εref+ εnA. (50)

It can be seen from equation (50) that εq+1
n depends on εqn

(when l= n). Since the boundary node sn connects to other
boundary point sl, the error εql at point sl and iteration q also
depends on the error εq−1

n at point sn at iteration q− 1 accord-
ing to equation (50). From this recurrent dependence of the
pressure error on its own values at previous iterations, equa-
tion (48) can be rewritten as

εqnB =
M∑
l=1

(w(l,n) · εql ) = an,0 +
q∑

p=1

an,pε
p
n, q> 0 (51)

where an,p are coefficients based on the omnidirectional integ-
ration algorithm. Assuming an,p are constant coefficients, and
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plugging equations (51) to (45), we have

εq+1
n −

q∑
p=1

an,pε
p
n = εref+ εnA+ an,0 (52)

Equation (52) is a non-homogenous linear recurrence.
According to Mariconda and Tonolo [63], the general solu-
tion to equation (52) can be obtained by adding a particular
solution to the general solution of the associated homogen-
eous recurrence. An order q recurrence has an order q char-
acteristic polynomial which has m distinct complex roots λm
of multiplicity µ1, . . . ,µm. Therefore, the general solution for
the homogeneous linear recurrence associated with equation
(52) is

εqn =
m∑
p=1

(
Pn,p (q) · (λn,p)q

)
(53)

where λn,p(p= 1, . . . , m) are the distinct roots of the
characteristic polynomials, and Pn,p (q) are polynomials of
degree strictly less than the corresponding multiplicity µp.
Furthermore, for an omnidirectional integration algorithm
such as the parallel ray omnidirectional integration with suf-
ficiently dense rays, the error converges as can be seen from
figure 8, implying that |λn,p|< 1∀n,p. Therefore, after suffi-
cient iterations (q≫ 1), the term with the largest magnitude
(λn,max) dominates the solution. Thus, the solution to equation
(52) for q≫ 1 can be written as

εqn = Pn,max (q)λ
q
n,max+ f(q) (54)

where Pn,max (q) is the polynomial of degree less than the mul-
tiplicity of the characteristic polynomial root λn,max and f(q) is
the particular solution for equation (52). We can evaluate the
particular solution, because when |λn,max|< 1, the first term on
the RHS of equation (54) is negligible for large q. As a result

εq∞n = f(q) . (55)

Inspecting figure 8, we can see that εqnB ≈ 0 when q is suffi-
ciently large, and the error εqn converges to εnA. Note that for
both cases shown in figure 8, εref = 0. According to equation
(45), to incorporate εref for the general case, we have

εq∞
n = εref+ εnA = f(q) . (56)

Plugging equation (56) into equation (54), we have

εqn = Pn,max (q)λ
q
n,max+ εref+ εnA (57)

i.e.

εqn− (εref+ εnA) = Pn,max (q)λ
q
n,max. (58)

Taking the logarithm of equation (58):

log10 |εqn− (εref+ εnA)|= qlog10 |λn,max|+ log10 |Pn,max (q)| .
(59)

When the solution is converged, q= qend:

εqendn ≈ εref+ εnA (60)

according to equation (56). From equations (59) and (60)

log10 |εqn− εqendn |= qlog10 |λn,max|+ log10 |Pn,max (q)| . (61)

Equation (61) is valid for large q when the polynomial
root λn,max dominates the solution. This hypothesis is checked
by finding λn,max for all boundary points (figure 20(a)) using
linear regression based on equation (61) and inspecting the
coefficient of determination R2 for linearity verification at
each boundary point as shown in figure 20(b). To facilitate
a conservative evaluation, the maximum absolute values of
the characteristic error decay rate of the boundary pressure
error for all boundary points at different parallel ray configur-
ation and noise conditions (e.g. with and without added noise)
are listed in table A1. Two cases were evaluated, one without
noise and one with 40% noise embedded in the pressure
gradient. For each case the pressure was reconstructed using
the rotating parallel ray method with parameter combina-
tions of

(
∆α= 0.040,∆d∗ = 0.4

)
,
(
∆α= 0.20,∆d∗ = 0.4

)
,(

∆α= 3.00,∆d∗ = 0.4
)
, respectively. The linear region was

established starting from iteration q= 8 up to q= 28 for all
three parameter combinations. When q> 28, the error differ-
ences (εqn− εqendn ) are below the floating-point relative accur-
acy of 2.2204× 10−16 . As shown in figure 20(b), in the
linear region, R2 is greater than 0.998 for the cases with
high or good ray densities, i.e.

(
∆α= 0.040,∆d∗ = 0.4

)
or(

∆α= 0.20,∆d∗ = 0.4
)
. For the worst case with low ray

density, i.e.
(
∆α= 3.00,∆d∗ = 0.4

)
, R2 can be as low as

0.825. In the linear region all boundary point solutions are
convergent, indicating |λn,max|< 1. Moreover, the rate of con-
vergence (1/λn,max) increases as the ray density increases,
e.g. max(|λn,max|) = 0.36 for

(
∆α= 0.040,∆d∗ = 0.4

)
, and

max(|λn,max|) = 0.57 for
(
∆α= 3.00,∆d∗ = 0.4

)
, as indic-

ated in the legend of figure 20(a). The fact that R2 is very
close to unity for high ray density indicates that equation (61)
is linear on q, and the second term on the RHS of equation
(61), i.e. log10 |Pn,max (q)| does not depend on q, implying
that Pn,max (q) is a constant (Cn,max). The solution to the non-
homogeneous linear recurrence (equation 52) for q≫ 1 can
now be expressed as

εqn = λqn,maxCn,max+ εnA+ εref. (62)

In the linear region, the slope (i.e. log10 |λn,max|) of the error
convergence curve depends on the number of rays, because
λn,max is a function of the ray connection scheme. How-
ever, λn,max does not depend on the noise level (as shown in
figures 20 and 21), nor the initial condition (as shown in fig-
ure 3). On the other hand, the constant Cn,max depends on the
initial condition (figure 3), the ray connection scheme (fig-
ure 21), and the noise level (figures 20 and 21), thus chan-
ging the elevation (log10 |Cn,max|) of the error convergence
curve.
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Figure 20. (a) Variation of characteristic error decay rate |λn,max| with each boundary point n for parallel ray omnidirectional integration
methods with different parallel ray parameters (∆d∗ and ∆α values). The characteristic error decay rate |λn,max| at every boundary point is
determined from linear regression of boundary pressure error log10 |ε

q
n− εqendn | with respect to iteration number q according to equation (61)

based on the pressure reconstructed using the rotating parallel ray omnidirectional method from the DNS isotropic turbulence flow pressure
gradient field with and without 40% noise embedded in the entire domain. (b) The coefficient of determination R2 determined at each
boundary point n for the linear regression of boundary pressure error log10 |ε

q
n− εqendn | with respect to iteration number q according to

equation (61)

As an additional validation case, we use the original
omnidirectional method [8] to verify the solution shown
in equation (62). For the original omnidirectional method,
all boundary points connect to each other only once.
Therefore,

{
R(i, j) = 0 if i= j
R(i, j) = 1 if i ̸= j

. (63)

From the definition equations (63) and (47)

εqnB =
1
Nn

(εqr − εqn) . (64)

Noticing that εqr ≡ εref and plugging equation (64) into
equation (45):

εq+1
n = εref+ εnA+

1
Nn

(εref− εqn) . (65)
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Table A1. The maximum value selected from the boundary pressure characteristic error decay rate associated with each boundary point.

Percentage noise
added (%)

Parallel ray config-
uration parameters

The maximum characteristic
error decay rate(|λn,max|)max

The minimum coefficient
of determination

(
R2)

min

0.0 (∆α= 0.04◦, ∆d∗ = 0.4) 0.36 0.9997
0.0 (∆α= 0.20◦, ∆d∗ = 0.4) 0.41 0.9991
0.0 (∆α= 3.00◦, ∆d∗ = 0.4) 0.57 0.8252

40.0 (∆α= 0.04◦, ∆d∗ = 0.4) 0.38 0.9981
40.0 (∆α= 0.20◦, ∆d∗ = 0.4) 0.39 0.9999
40.0 (∆α= 3.00◦, ∆d∗ = 0.4) 0.57 0.8682

If the errors of the initial pressure values at the boundary
points are ε0n, the solution to the error convergence (equa-
tion 65) at the boundary points for the original omnidirec-
tional method can be obtained by following the procedure in
Mariconda and Tonolo [63], which gives

εqn =

(
− 1
Nn

)q(
ε0n− εref−

Nn
Nn+ 1

εnA

)
+ εref+

Nn
Nn+ 1

εnA.

(66)
Rearranging equation (66) and taking the logarithm,

log10

∣∣∣∣εqn− εref−
Nn

Nn+ 1
εnA

∣∣∣∣= qlog10

(
1
Nn

)
+ log10

∣∣∣∣ε0n− εref−
Nn

Nn+ 1
εnA

∣∣∣∣ . (67)

For Nn ≫ 1,

log10
∣∣εqn− εref− εnA

∣∣= qlog10

(
1
Nn

)
+ log10

∣∣∣ε0n− εref− εnA

∣∣∣ .
(68)

Equation (68) shows the error convergence relationship
for the special case for which, λn,max = 1

Nn
(thus λn,max < 1)

and Cn,max = ε0n− εref− εnA. The slope log10

(
1
Nn

)
does not

depend on the initial condition
(
p0n
)
nor the noise level on

the pressure gradient. Figures 15(a-ii) and (b-ii) illustrate this
behavior by means of the original omnidirectional method.

Appendix B

As indicated in figure 4, for a fixed sufficiently small distance
between parallel rays, the decrease of the rotation angle incre-
ment ∆α results in an improved uniform distribution of the
weight function w(l,n) (with |w(l,n)| ≪ 1). As revealed by
equations (14) and (15), a denser parallel ray setting means
more boundary pressure point are connecting to each other.
For a fixed boundary point (sn), to ensure every boundary
nodal point (sl) has at least one chance to connect to other
boundary point (sn), simple trigonometric analyses as shown
in figure 22(a) by considering the diagonal corner points A
and B and the immediate neighbouring point C allow the smal-
lest rotation angle increment∆α be estimated using the law of

cosines as follows:

∆α= acos

(
|AB|2 + |AC|2 − |BC|2

2 |AB| · |AC|

)
. (69)

For a domain withm× n nodal points and uniform grid size
of ∆h:

|AB|=∆h
√
(m− 1)2 +(n− 1)2 (70)

|AC|=∆h
√
(m− 2)2 +(n− 1)2 (71)

|BC|=∆h. (72)

Plugging equations (70–72) into equation (69), we have

∆α= acos

 (m− 1)2 + 2(n− 1)2 +(m− 2)2 − 1

2
√

(m− 1)2 +(n− 1)2 ·
√

(m− 2)2 +(n− 1)2

 .

(73)
Thus for a domain with 254× 254 nodal points, equation

(62) indicates that, considering the rotational angle incre-
ment changes only, in order to ensure every boundary nodal
point has at least one chance to connect to other boundary
point, the minimum rotational angle increment must satisfy
∆α≈ 0.11◦.

The optimal parallel ray line spacing∆d can be determined
by considering a special case of parallel rays passing through
corner neighboring points D, E and F along a 45◦ direction
with respect to the horizontal axis of the domain, as shown in
figure 22(b). In this case, in order for points D and F to be
connected to each other, simple rotation of the parallel rays
may not be sufficient. Rather, we need to require parallel rays
adopt an optimal spacing so that the two points can be con-
nected. Study of the geometry indicates that

√
2/4<∆d∗ ≡

∆d/∆h<
√
2/2, i.e. 0.35<∆d∗ < 0.71 can ensure points D

and F be connected for this case.
The above ranges for ∆d∗ and ∆α are consistent with

the parameter optimization study by Liu et al [15], regard-
ing the optimum choices of line spacing∆d∗ and line rotation
angle increment∆α. Since the above∆d∗ and∆α ranges are
derived separately, when combing them together, the stringent
requirement may be relaxed to some extent. In this paper, we
choose ∆d∗ = 0.4 and ∆α= 0.2 as a compromise between
computation cost and accuracy requirement for the domain of
254× 254 nodal points.
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Figure 21. Boundary pressure error convergence for the pressure reconstructed from a pressure gradient field (a) without added noise and
(b) with the 40% embedded noise, respectively. (a-i), and (b-i): Boundary pressure convergence using the rotating parallel ray
omnidirectional integration method with three different rotational angle increments; (a-ii) and (b-ii): boundary pressure convergence using
the original omnidirectional integration method [8] with three different grid size (with the same domain size but different cell size):
N = 1011 corresponding to a grid of (254 × 254); N = 503 corresponding to a grid of (127 × 127), achieved by sampling every other point
over the original grid; and N = 335 corresponding to (85 × 85), achieved by skipping two points for sampling.
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Figure 22. Schematic for optimal rotation angle increment ∆α and parallel ray spacing ∆d analysis.
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