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The effect of the subgrid-scale (SGS) stress due to limited PIV resolution on pressure 
measurement accuracy is investigated using data from a direct numerical simulation of 
turbulent channel flow available at the John Hopkins University Turbulence Database 
(JHTDB).  A series of 1400 consecutive realizations of sample block data with 51251249 
grid nodal points were selected and spatially filtered with a 171717 box average with a 50% 
planar overlap, giving rise to PIV resolution of roughly 62.6 times of the viscous length scale 
of the turbulent channel flow. Comparison of the reconstructed pressure at different levels of 
pressure gradient approximation with the filtered pressure shows that the neglect of the 
viscous term results in a small but noticeable change in the reconstructed pressure, especially 
in regions near the channel walls. As a contrast, the neglect of the SGS stress results in a more 
significant increase in both the bias and the random errors, indicating the SGS term must be 
accounted for in PIV pressure measurement.  Correction using similarity SGS modeling 
reduces the random error due to omission of SGS stress from 106.3% to 80.4% of the r.m.s. 
fluctuation of the filtered pressure, confirming the benefit of the error compensation method.  

Nomenclature 

ij  = the Kronecker delta for index notation 

  = the molecular kinematic viscosity  

0  = constant density for incompressible flow 

ij  = subgrid-scale stress 

f  = forcing term in the direct numerical simulation 

p  = kinematic pressure, i.e., pressure divided by constant density 

p~  = filtered kinematic pressure 

t  = time 

iu  = the i-th veloicity component using index notation 

iu~ = = filtered velocity component 

v = = the wall-normal velcoity at the top and botttom walls of the channel 
x, y, z = the streamwise, wall normal and spanwise directions of the channel flow 
i, j = index notation representing the x, y, or z components 
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I. Introduction 
nowledge of pressure distribution in flow field is of fundamental importance in many engineering applications. 
For example, pressure is responsible for aerodynamic or hydrodynamic forces such as lift and form drag acting 

on a moving body in fluid. Wall pressure fluctuations result in excitation of structures, leading to flow-induced 
vibrations and acoustic noise1 (Blake 1986). In turbulence research, the pressure diffusion and the pressure-strain 
tensors are key unresolved parameters in turbulence modeling2, 3 (Pope 2000; Girimaji 2000). Pressure is also essential 
for understanding and modeling cavitation4, 5 (Arndt 2002; Brennen 1995). 

Because of the importance of the pressure information in flow field, and in recognition of the need of a reliable 
tool for instantaneous spatial pressure distribution measurements, efforts in developing non-intrusive pressure 
measurement techniques have been carried out in the past decade in the fluids community. It is shown that the 
instantaneous pressure distribution in an incompressible turbulent flow field can be reconstructed by integration of the 
measured material acceleration, which constitutes the dominant contributor to pressure gradient with the viscous term 
being negligible for flows at high Reynolds number and away from wall, as demonstrated by Liu and Katz6-9 (2003, 
2006, 2008, 2013) , van Oudheusden10 (2008), Ragni et al.11 (2009) and Joshi et al.12 (2014), to name a few. The 
material acceleration can be measured non-intrusively using PIV (Particle Image Velocimetry), either discretely6-8 or 
continuously9, 12 time-resolved. Once the material acceleration is obtained, the pressure gradient is known. Further 
integrating it will obtain the pressure. So far there are three major types of integration methods, i.e., direct line 
integration, Poisson equation and least-square reconstruction, that have been introduced and developed for the 
pressure reconstruction from the measured material acceleration.  For direct line integration, representative method is 
the so-called Circular Virtual Boundary, Omni-Directional Integration6-9 over the entire measurement domain, which 
was evolved recently to a new algorithm featuring rotating parallel ray13 as integration path guidance. Representative 
Poisson equation approach can be found in de Kat and van Oudheusden14-15 (2010, 2012), Violato et al.16 (2011),  and 
Auteri et al17 (2015), etc. Review and comparison of the direct line integration and Poisson equation pressure 
reconstruction approaches can be found in Charonko et al.18 (2010), and van Oudheusden19 (2013). The least-square 
reconstruction approach20 (Jeon et al, 2015) was recently used to experimentally obtain instantaneous pressure field 
in a wake of a separated flow over an airfoil. This approach was also referred to as direct matrix inversion by Liu and 
Katz7 (2006).   

Besides the pressure reconstruction methods, one area that is important yet has not been investigated thoroughly 
is the effect of the PIV measurement resolution on the accuracy of the measured pressure. To accurately measure the 
pressure distribution in a turbulent flow field, the measurement probe volume, i.e., the PIV interrogation window size 
should be able to resolve the smallest length scale, i.e., the Kolmogorov length scale in the turbulence flow field. 
However, due to technical constraints, usually the spatial resolution of the digital PIV is at least one or two orders of 
magnitude larger than that of the smallest turbulence length scale in a turbulent flow field, depending on Reynolds 
number and PIV setup. The resolution issue becomes even more prominent for tomographic PIV, as its resolution is 
usually coarser than that of planar PIV. Because of the finite spatial resolution, the pressure reconstructed from PIV 
measurement is actually subjected to the effect of spatial filtering. Consequently, the reconstructed pressure is 
effectively imbedded with the contribution from the subgrid-scale stress, which is a term appearing in the filtered 
Navier-Stokes equation as a result of the spatial filtering imposed by the finite resolution of the PIV measurement. 

To quantify the effect of the SGS stress on the accuracy of the non-intrusive spatial pressure measurement, we use 
box filtering to filter the pressure as well as the three dimensional velocity components of both the isotropic turbulence 
and the turbulent channel flow direct numerical simulation (DNS) data vailable to public from the John Hopkins 
University Turbulence Database (JHTDB) (Li et al.21, 2008, Perlman et al.22, 2007 and Graham et al.23, 2013).  As a 
way to simulate the pressure measurement process, we apply the material acceleration calculation and pressure 
reconstruction procedures introduced in Liu and Katz7-9 to obtain the pressure distribution. The reconstructed pressure, 
with and without the incorporation of the SGS stress, is compared with the pressure filtered directly from the DNS 
database, thus enabling quantification of the SGS stress influence on the reconstructed pressure. To compensate the 
SGS stress influence, the SGS stress term calculated using the similarity model24 (Meneveau and Katz, 2000) is 
incorporated in the pressure reconstruction process based on the filtered velocity data. The effectiveness of the 
compensation is then gauged by comparison with the filtered DNS pressure.   

Preliminary analysis of the forced isotropic turbulence based on a 555 box filter with 50% planar overlap25 (Liu 
et al., 2015) shows that although at most areas the magnitude of the SGS stress tensor is far less than that of the 
pressure gradient, at certain locations in the flow field, the SGS stress differential terms actually have dominant values 
that dwarf the pressure gradient, suggesting the neglect of the SGS stress term in the pressure reconstruction process 
is not appropriate, even for isotropic flow field.  The analysis also confirms that the neglect of the viscous term results 
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in a negligible changes in the reconstructed pressure for the isotropic turbulence. However, as a contrast, the neglect 
of the SGS stress term results in a significant increase in both the bias error and the random error, suggesting the SGS 
term must be accounted for in the PIV pressure measurement. The random error in the reconstructed instantaneous 
pressure caused by the SGS stress is about 4.4% of the r.m.s. fluctuation of the filtered isotropic pressure. Correction 
using similarity SGS stress modeling reduces the error to 2.1%, confirming the benefit of the error compensation 
method. 

In this paper, we focus on reporting the investigation result of resolution analysis based on the DNS channel flow 
data. Since large shear stress near the channel wall region is involved in the data analysis, this turbulence channel flow 
investigation represents a more practical and more challenging test case in comparison with the isotropic turbulence 
data. The resolution effect on the accuracy of the reconstructed pressure due to neglect of SGS stress for the channel 
shear flow will be characterized, and the effectiveness of the compensation method based on SGS similarity modelling 
will be presented. It is anticipated that the compensation method will bring in positive impact on the practice of non-
intrusive volumetric spatial pressure measurement in the fluid dynamics community. 

The paper will be arranged as follows: In section II, the JHU channel flow turbulence database will be briefly 
reviewed.  Subsequently in section III, the governing equations for the forced turbulent channel flow will be listed. 
The method of investigation of the present work will be described in Section IV.  Results and discussion will be 
presented in Section V. 

II. The JHU Channel Flow Turbulence Database 
The JHU turbulent channel flow database is attained via direct numerical simulation (DNS) of wall bounded flow. 

Periodic boundary conditions are imposed in the longitudinal and traverse directions, and no-slip conditions along the 
top and bottom walls. When producing the data from DNS, the Navier-Stokes equations are solved with a wall-normal, 
velocity-vorticity fomulation26 (Kim, et al., 1987). The turbulent channel flow simulation uses the petascale DNS 
channel flow code developed at the University of Texas at Austin by Prof. Robert Moser’s research group27. 
Incompressible Navier-Stokes equations are solved using the pseudo-spectral (Fourier-Galerkin) method in wall-
parallel (x, z) planes, and the 7th-order B-spline collocation method in the wall-normal (y) direction. Pressure is 
decoupled from the governing equations in the wall-normal, velocity-vorticity formulation. To obtain the pressure 
field for the database the pressure solves the pressure Poisson equation in the form  

 
i

j

j
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x

u
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






2   (1)  

where p is the kinematic pressure, i.e., the pressure divided by the constant density 
0 , and 

iu  represents the i-th 

veloicity component using index notation. The Neumann boundary condition is of the form   
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            (2) 

where v is the molecular kinematic viscosity and v the wall-normal velcoity present at the top and botttom walls of 
the bounded channel. This calculation is performed independtly from the velocity field solution when outputting fields. 
The simulation solves an approximate single flow through time, storing 3 component velocity vector and pressure 
fields every 5 time steps, yielding a time interval dt of 0.0065 between 4000 frames of instant realizations. The time 
interval between stored samples is smaller than the Kolmogorov time scale of 0.0446, thus rendering fully-resolved 
temporal scales for the simulated channel flow turbulence27. 

The simulation was performed on a three dimensional periodic grid with 2048512 nodal points in physical 
space over a domain of 82 in x, y, z coordinate directions, yielding spatial intervals of 0.01227, 0.00391, 0.00614 
in x, y, z coordinate directions, respectively, in the stored database samples. The grid size in the y direction are on the 
same order of the viscous length scale of 0.001 (Graham, et al., 2013) 27. 

III. The Governing Equations 
The forced channel flow obtaind by DNS is governed by the following momentum equation:  
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  (3)  

where t is time, f  the forcing term, 
ij  the Kronecker delta for index notation. Correspondingly, the filtered momentum 

equation takes the form 
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where “~” denotes filtering at a filter size of Δ. The sub-grid scale stressij is defined as 

 ߬௜௝ ൌ ఫ෦ݑపݑ െ   ෤௝ (5)ݑ෤௜ݑ

which is a new quantity introduced as a result of filtering. In equation (4), 
j
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acceleration term,  ij
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
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  the viscous term, and 
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~  the forcing term. 

 

 

 

 

 

  

                

 

 

Figure 1. Three grid levels utilized in the application of the SGS stress modeling. (a) Grid Level 0 denotes the 
grid resolution level of the DNS data from the Johns Hopkins Turbulence Database; (b) Grid Level 1 is 
representitive of the PIV measurement resolution, after an arbitrary 171717 filtering applied to DNS data; 
(c) Grid Level 2 represents the resolution after a 333 filtering performed on data at Grid Level 1; (d) The 
unfiltered DNS u-velocity magnitude contour on Grid Level 0, (b) The filtered u-velocity magnitude contour 
on Grid Level 1, (c) The u-velocity magnitude contour after the second spatial filtering on Grid Level 2. 
 

IV. Method of Investigation 

A series of 1400 consecutive realizations of sample block data with 51251249 grid nodal points were selected 
from the JHTDB channel flow DNS database for investigation. To simulate the PIV filtering effect, the velocity 
components and the pressure in the 51251249 selected domain, denoted as Grid Level 0 in Figure 1, are spatially 
filted using a 171717 box average with a 50% planar overlap, reducing the resolution of the cutout to a block of 
62625 coarse nodal points (denoted as Grid Level 1 in Figure 1). By applying this 171717 box filtering, the data 
resolution in wall normal direction is spatially reduced to 160.00391, which is roughly 62.6 times of the viscous 
length scale of the turbulent channel flow. Thus the data on Grid Level 1 can be approximted to represent a coarse 
resolution level of PIV measurement.  

(d) 

(a) 

(e) (f) 

(b) (c) 
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On Grid Level 1, the resolved SGS stress can be determined as 

 ߬௜௝ሺଵሻ ൌ ఫ෦ݑపݑ െ   ෤௝  (6)ݑ෤௜ݑ

However, for real PIV measurements, only the velocity of the flow is measured and the resolved SGS stress ߬௜௝ሺଵሻ is 
unknown. The SGS stress on the PIV resolution is what we seek to evaluate so as to be able to close the equation. 
Therefore, we use an approximation on a coarser resolution in conjunction with an appropriate scheme of SGS 
modeling to quantify the unknown SGS stress value.  To do so, the data on Grid Level 1 is again filtered with a 333 
box filter, reducing the size of the now twice filtered data to 60603 nodal points. On this scale, the SGS stress ߬௜௝ሺଶሻ 
is defined as  

 ߬௜௝ሺଶሻ ൌ ෤ఫ෪ݑ෤పݑ െ   ෤෨௝ (7)ݑ෤෨௜ݑ

where “≈” represents the second filtering of the data from Grid Level 1. Using SGS stress modeling, ߬௜௝ሺଶሻ can be 
related to ߬௜௝ሺଵሻ, thus quantifying the SGS stress from the PIV data. The similarity SGS stress modeling24 (Katz and 
Menevaue, 2000) is applied in this study due to the simplicity of the technique and its easily interpreted physical 
foundation. The basis of the SGS model is that the velocity field on the small scales (below the filter size Δ) behaves 
similarly to that on the larger scales (above Δ).  Accordingly ߬௜௝ሺଵሻ at the PIV resolution on Grid Level 1 must be 
similar to ߬௜௝ሺଶሻ, a stress tensor constructed from the resolved veloicity field. Thus, the SGS stress model ߬௜௝ሺଵሻ can be 
quantified by 

 ߬௜௝_௠௢ௗ௘௟ሺଵሻ ൌ   ௦௜௠߬௜௝ሺଶሻ (8)ܥ

where ܥ௦௜௠ is the modeling constant24, which is chosen as 1.0 for the current application. The modeled SGS stress, 
߬௜௝_௠௢ௗ௘௟ሺଵሻ from Equation (8), can be used to close the filtered momentum equation and investigate the effectiveness 
of inclusion of the modeled SGS stress term on the accuracy improvement of the measured pressure.  
 

 
Figure 2. Comparison of the differential subgrid-scale stress terms with the corresponsing gradients of the 
filtered DNS pressure using an arbitrary instant realization as an example. 
 

With the resolved velocity component (u, v, w) and pressure (p) provided by the JHTDB, all terms in Equation (4) 
are known after the application of the first filtering except for the forcing term ݂ ሚ. The forcing term ݂ ሚ can be determined 
indirectly through balancing of Equation (4). The components of Equation (4), with or without the addition of the SGS 
stress term, can be spatially integrated respectively using the pressure reconstruction code developed by Liu and Katz6-

9. The results of the integration can then be compared with the filtered DNS pressure, which can be considered as the 
“true pressure” that the nonintrusive PIV pressure measurement aims to capture at the PIV resolution level. By doing 
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so, the influence of the SGS term on the accuracy of the pressure mesurement can be quantified. Strategic inclusion 
and exculsion of individual terms such as the viscous term can measure their contribution to the pressure measurement 
as well. 

 

 
Figure 3. Probability density functions for the SGS term, the gradients of the filtered pressure and their ratios 
at the center plane of the 62625 domain of Grid Level 1. 
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V. Results and Discussion 
The goal of this investigation is to determine the influence of the SGS stress on the accuracy of PIV pressure 

measurements in a wall bounded channel flow. We begin this inquiry by examining the relative magnitude of the SGS 
stress tensor in comparison with the gradients of the filtered pressure terms. The x- and y-components of the SGS 
stress term, pressure gradients and their corresponding ratio on the center plane of the 62625 field of Grid Level 1 
using an arbitrary instant realization as an example are presented in Figrure 2. Evident from Figure 2(a), (b), (d) and 
(e), the peak values of the SGS term occur near the channel wall, with magnitudes comparable with that of the 
corresponding pressure graidnets. In contrast, in regions away from the wall, the SGS term is generally smaller. 
However, distributions of the ratio between the two quantities shown in Figures 2(c) and (f) indicate that certain 
isolated regions exist where the SGS stress is considerably larger than that of the pressure gradients. This qualitative 
understanding is further confirmed by the probabiity diensity function (pdf) distributions and the associated statistics 
of these two types of terms, as shown in Figure 3 and Table 1, respectively.  

 
Table 1. Statistics of the SGS stress term, the pressure gradients and their ratios at the center plane of a 
sample 62625 course domain of Grid Level 1. 

 Mean Standard 
Deviation, σ 

Kurtosis, k 
 

Kurtosis/ Standard 
Deviation, k/σ 
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࢟࢟࣎ࣔ
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ࢠ࢟࣎ࣔ
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-8.043E-04 1.857E-02 9.946 535.5 

෥࢖ࣔ
࢞ࣔ

 
5.853E-04 1.020E-02 4.788 469.4 

෥࢖ࣔ
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-8.991E-05 2.694E-02 6.458 240.1 
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ࢠ࢞࣎ࣔ
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൘  
0.4744 25.67 

 
1020.6 39.76 

ቆ
࢟࢞࣎ࣔ
࢞ࣔ

൅
࢟࢟࣎ࣔ
࢟ࣔ

൅
ࢠ࢟࣎ࣔ
ࢠࣔ

ቇ
෥࢖ࣔ
࢟ࣔ

൘  
-1.031 32.28 2829.6 87.65 

 
Clearly visibile in Figure 3 and Table 1, all the pdf profiles of these quantities are close to being symmetric with 

resepect to their almost zero mean values. However, the pdf distributions of both the x and y components of the SGS 
stress differential and pressure grandient terms (Figure 3a, b, c and d) are all strongly “outlire”-prone, as evidenced 
by their high kurtosis numbers (~O(100σ), Table 1), indicating that their pdf profile shape is stronly deviated from 
that of the Gaussian distribution, for which the kurtosis value is 3σ. This strong “outlire”-prone behavior is due to the 
high wall shear effect near the channel wall. Evident in Figure 3(e) and (f) and Table 1, the large standard deviation 
(~20-30) and extremly high kurtosis (~1021-2830) of the ratio between the SGS stress differntial term and the pressure 
gradient, indicates that at certain locations in the filtered flow field, the SGS stress differential terms have a dominant 
value that dwarfs the local pressure gradient, implying that neglecting the SGS term would introduce error to the 
reconstructed pressure if it is not appropriately accounted for. To quantify the influence of the SGS stress term on the 
accuracy of the reconstructed pressure, we resort to comparisons of the integral results of the different terms that 
comprise Eqiation (4). 

Figure 4 shows the comparisons of the integral results of the viscous, forcing, SGS stress, and material acceleration 
terms with the filtered pressure at Grid Level 1 as well as the unfiltered DNS pressure. The integration is achieved 
using the pressure reconstruction code developed by Liu and Katz6-9, based on circular virtual boundary, omni-
directional integration method. The forcing term is otained from the balance of Equation (4) as 
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As shown in Figure 4, peak values of both the viscous and the SGS stress terms occur near the channel wall, and 
have the same order of magnitude as those of the material acceleration and the filtered pressure. In regions away from 
the wall, besides the forcing term, the material acceleration term is shown to have a dominant contribution to pressure 
in comparison with the viscous and the SGS stress terms. The vital inclusion of the SGS stress and viscous terms near 
the channel wall represent a more practical and more challenging test case in comparison with the isotropic turbulence 
case25 where the viscous term was negligible. 
 

 

   
              

 
 

Figure 4. Comparison of the integral results of (a) viscous, (b) forcing, (c) SGS stress, and (d) material 
acceleration terms with (e) the filtered pressure and (f) the unfiltered DNS pressure using an arbitrary instant 
realization as an example. 

 

 
Figure 5. Comparison of the differences between the reconstructed pressure at different levels of 
approximation and the filtered pressure ࢖෥ using an arbitrary instant realization as an example. (a), all terms 
accounted for; (b), viscous term only is neglected; (c), SGS stress term only is neglected and (d), SGS stress 
term is substituted with the modeled SGS stress based on similarity modeling. 
 

To further gauge the effect of different levels of approximation of the pressure gradient on the accuracy of the 
pressure reconstruction, and to evaluate the effect of similarity modeling on the compensation of the erros due to lack 
of resolved SGS stress, we define the following error quantities, with the filtered pressure ݌෤ treated as the “true 
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Figure 6. Probability density function of the differences between the reconstructed pressure at different levels 
of approximation and the filtered pressure ࢖෥, using an arbitrary instant realization as an example. (a), all terms 
accounted for; (b), viscous term neglected; (c), SGS stress term neglected; and (d), the unknown SGS stress is 
substituted with the modeled SGS stress based on similarity modeling. 
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while ߝଷ to examine the effect of neglecting the SGS term, and ߝସ to examine the effect of substituting the unavailable 
SGS stress term with the modeled SGS stress, i.e,  ߬௜௝_௠௢ௗ௘௟ሺଵሻ ൌ  .௦௜௠߬௜௝ሺଶሻ in pressure reconstructionܥ

The distributions of the above errors are shown in Figure 5. The contributing sources to the baseline ߝଵ mainly 
include a variety of numerical errors accumulated from different steps on the calculation procedures before obtaining 
the final integrals. The error ߝଶ shown in Figure 5(b) indicates that the omision of the viscous term introduces a small 
but noticable error in comparison with Figure 5(a). However, the neglect of the SGS stress term, shown in Figure 5(c), 
yields a significant error increase in comparison with ߝଵ. Using the previously defined similarity model to substitute 
the unknown SGS stress obviously improves the situation in comparison to ߝଷ, as demonstrated clearly by ߝସ	in Figure 
5(d). 

To further quantify these errors, pdf plots of these errors based on a single instantaneous realization are presented 
in Figure 6. Related statistics, averaged over 1400 realizations are shown in Table 2. The standard deviation of the 
fluctuating filtered pressure ߪ௣෤ is used to guage (normalize) the statistics . As the statistics in Table 2 reveals the 
neglect of the viscous term ሺߝଶሻ introduced a small amount of error into the pressure reconstrction, but still on the 
same order of magnitude as the baseline error ߝଵ. This agrees with the comparison of Figures 5 (a) and (b) and Figures 
6 (a) and (b). Consistent with the previously visualized results, neglecting the SGS stress, ߝଷ, increases both the bias 
error (i.e. mean value of error normalized by ߪ௣෤) from 1.7% to -36.63% and the random error (i.e., standard deviation 
of error normalized by ߪ௣෤) from 17.30% to 106.29%. Similarity modeling using Grid Level 2 approximation to 
substitute the unknown SGS stress improves the situation by reducing the magnitude of bias error and random error 
to 10.77% and 80.38% respectively, as seen in Table 2. The improvement of the error by inclusion of the model SGS 
stress confirmes our hypothesis and supports the motivation to include the modeled SGS when reconstructing pressure. 
Note that in PIV pressure measurement, the bias error may be corrected by offset of the measured mean pressure using 
a reference pressure. The large random error (~100% ) due to the ommision of the SGS stress occuring at 171717 
filtering level also indicates the need of sufficient measurement resolution in ensuring pressure reconstruction 
accuracy.    

 
Table 2. Statistics of pressure differences averaged over 1400 instantneous realizations 

 All terms 
accounted for, ࢿ૚ 

Viscous term 
neglected, ࢿ૛ 

SGS stress term 
neglected, ࢿ૜ 

SGS stress based on 
similarity modeling, ࢿ૝ 

 ෥ 0.0177 0.4055 -0.3663 .1077࢖࣌	/	ઽ	ܖ܉܍ۻ
 ෥ 0.1730 0.2037 1.0629 0.8038࢖࣌	/	ઽ	ܖܗܑܜ܉ܑܞ܍۲	܌܉܌ܖ܉ܜ܁

   Note:  ߪ෤௣෤ ൌ0.0028 
 

 
Figure 7. Convergence of (a) the mean and (b) the standard deviation of the pressure errors evergaed over 1400 
consectitive instantaenous realizations.  

 
The simulation of turbulent channel flow was performed over 1400 instantaneous in order to obtain a converged 

accepted result. The progression of the convergence of the bias error and random error are presented in Figure 7 (a) 
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and (b), respectively. It seems that with the 1400 ensemble size, all of the standard deviations of errors ߝଵ through 
error ߝସ reach convergence. However, the mean values of errors errors ߝଷ and errors ߝସ still oscilates even with the 
1400 ensembel size.   

 

VI. Conclusion and future work 
The effect of the SGS stress on the accuracy of the non-intrusive spatial pressure measurement is investigated 

using data from a direct numerical simulation of turbulent channel flow available to the public at the John Hopkins 
University Turbulence Database (JHTDB).  A series of 1400 consecutive realizations of sample block data with 
51251249 grid nodal points were selected. To simulate the PIV filtering effect, these data are spatially filted using 
a 171717 box average with a 50% planar overlap, giving rise to PIV resolution of roughly 62.6 times of the viscous 
length scale of the turbulent channel flow.  

Examination of the relative magnitude of the SGS stress tensor components against their corresponding pressure 
gradient terms shows that although at most areas the magnitude of the SGS stress tensor is less than that of the pressure 
gradient, at certain locations in the flow field, especially near the channel walls, neglecting the SGS stress term in the 
pressure reconstruction process may not be appropriate.  

Comparison of the reconstructed pressure at different levels of pressure gradient approximation with the filtered 
pressure shows that the neglect of the viscous term results in a small but noticeable change in the reconstructed 
pressure, suggesting that due to the presence of wall bounds in the flow the viscous term should be included for desired 
accuracy, especially in regions near channel walls. However, as a contrast, the neglect of the SGS stress results in a 
more significant increase in both the bias error and random error, indicating the SGS term need to be accounted for in 
the PIV pressure measurement.  Correction using similarity SGS modeling reduces the random error from 106.29% 
to 80.38% of the r.m.s. fluctuation of the filtered pressure, confirming the benefit of the error compensation method. 

The large error ( ~100% ) due to the ommision of the SGS stress occuring at 171717 filtering level indicates the 
need of sufficient measurement resolution in ensuring pressure reconstruction accuracy. To demonstrate that 
anticipated positive effect of resolution increase on the improvement of the pressure reconstruction accuracy, the same 
data set will be filtered with a smaller 555 filter (corresponding to 15.6 times of the viscous length scale, a more 
realistic PIV resolution), and the procedures and analyese outlined in this paper will be implemented, as the ongoing 
and future work. In addition, effects of using different SGS stress modeling methods, such as dynamic and 
Smagorinsky modeling, in suppressing the pressure reconstruction error will be investigated.  
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