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Instantaneous Pressure Reconstruction from Measured 
Pressure Gradient using Rotating Parallel Ray Method  

Xiaofeng Liu1, Jose Roberto Moreto2  and Seth Siddle-Mitchell3 
San Diego State University, San Diego, California, 92182-1308 

This paper presents a novel pressure reconstruction method featuring rotating parallel 
ray omni-directional integration. It is an improvement over the circular virtual boundary 
integration method for non-intrusive instantaneous pressure measurement in incompressible 
flow field. Unlike the old method, where the integration path is originated from a virtual 
circular boundary at a finite distance from the integration domain, the new method utilizes 
parallel rays, which can be viewed as being originated from a distance of infinity, as 
guidance for integration paths. By rotating the parallel rays, omni-directional paths with 
equal weights coming from all directions toward the point of interest at any location within 
the computation domain are generated, thus eliminating the inherent location dependence of 
the integration weight in the old algorithm. By implementing this new algorithm, the 
accuracy of the reconstructed pressure for a synthetic rotational flow in terms of r.m.s. error 
from theoretical values is reduced from 1.03% to 0.30%.  Improvement is further 
demonstrated from the comparison of the reconstructed pressure with the direct numerical 
simulation generated pressure from the Johns Hopkins University isotropic turbulence 
database (JHTDB). 

Nomenclature 

 = rotation angle of the rotating parallel rays 
d = distance from a ray to the geometric center of the pressure reconstruction domain 
Cp = pressure coefficient 
 = increment of the rotation angle of the rotating parallel rays 
d = distance between adjacent parallel rays 
h = grid size of the computation domain 
t = time interval between adjacent PIV image exposures 
m = (m+1) is the total number of nodal points in the x-dimension 
n = (n+1) is the total number of nodal points in the y-dimension 
p = pressure 
r = radial distance from center of solid body rotation 
i = index of nodal points in the x-direction 
j = index of nodal points in the y-direction 
 = angular rotation rate of solid-body rotation 

I. Introduction 
RESSURE distribution plays a crucial role in determining the flow phenomena and the system performance for 
a variety of applications involving fluid flow. For example, pressure is responsible for the lift and form drag 

acting on a moving body in fluid. Wall pressure fluctuations result in excitation of structures, leading to flow-
induced vibrations and acoustic noise1 (Blake 1986). In turbulence research, the pressure diffusion and the pressure-
strain tensors are key unresolved parameters in modeling of turbulence2, 3 (Pope 2000; Girimaji 2000). Pressure is 
also essential for understanding and modeling cavitation4, 5 (Arndt 2002; Brennen 1995). 
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Because of the importance of the pressure information in flow field, efforts in developing non-intrusive pressure 
measurement techniques have been carried out in the past decade in the fluids community. Motivated by the lack of 
appropriate means for instantaneous spatial pressure distribution measurements, Liu and Katz6-9 (2003, 2006, 2008, 
and 2013) have introduced and developed a novel non-intrusive technique capable of measuring the instantaneous 
spatial pressure, velocity and material acceleration distributions simultaneously over a sample area in a turbulent 
flow field. With the viscous term being negligible for high Reynolds number incompressible flow away from wall, 
the material acceleration is the dominant term that balances the pressure gradient. Once the material acceleration is 
obtained experimentally, the pressure gradient is known. Further integrating it will obtain the pressure. This is the 
roadmap introduced in Liu and Katz6-7 (2003 and 2006). Initially, this technique utilized a four-exposure PIV 
(Particle Image Velocimetry) system, which consists of two 2K2K CCD cameras and perpendicularly polarized 
Nd:Yag lasers, to measure the in-plane distribution of material acceleration by comparing the velocity of the same 
group of particles at different time, and then integrate it to obtain the pressure distribution. Starting in spring 2010, 
the four-exposure PIV system has been replaced by a time-resolved PIV system which consists of a high speed 
camera and a high repetition rate laser. A so-called Circular Virtual Boundary, Omni-Directional Integration over 
the entire measurement domain for pressure reconstruction was introduced by Liu and Katz6-9. The robustness of this 
integration method has been confirmed by Charonko et al10 (2010), and utilized by several groups, e.g., Dabiri et 
al11 (2014). Spatial integration of the measured acceleration field based on time-resolved PIV measurements to 
obtain the pressure distribution has also been used by van Oudheusden12 (2008) and Ragni et al13 (2009).  

Besides the spatial integration method, de Kat and van Oudheusden14-15 (2010, 2012) and Violato et al16 (2011) 
use a Poisson equation solver to calculate the pressure from time resolved PIV measurements (see also van 
Oudheusden17 2013). More recently, an improved Poisson equation approach is proposed by Auteri et al18 (2015). 
Following the advent of time-resolved PIV, the pressure reconstruction has also been adapted for measuring the 
temporal derivatives of surface pressure distribution, which is further used for estimating the acoustic pressure 
radiated from a surface19-21 (Haigermoser 2009, Koschatzky et al 2010, and Moore et al 2010).  

In addition to the omni-directional integration and the Poisson equation approaches, recently a so-called least-
square reconstruction approach22 (Jeon et al, 2015) is used for experimentally obtaining instantaneous pressure field 
in a wake of a separated flow over an airfoil. This approach is also referred to as direct matrix inversion by Liu and 
Katz7 (2006).   

One of the prominent difficulties in non-intrusive pressure measurement is how to reconstruct the pressure from 
the measured pressure gradient (or material acceleration as its dominant contributor) which is inevitably embedded 
with measurement errors.  By minimizing the influence of errors in the measured data, the Circular Virtual 
Boundary, Omni-Directional Integration provides an effective method to reconstruct the pressure field. However, 
there is an inherent defect associated with the arrangement of the integration paths during the implementation of the 
algorithm, i.e., other than the points near the geometric center of the real integration domain, points at other places 
do not see a symmetric distribution of the virtual integration paths. This results in non-uniform weight of 
contribution to the final integration result at points away from the geometric center of the integration domain. As a 
result, the accuracy of the reconstructed pressure might be compromised, especially at places away from the 
geometric center of the computation domain.  

In recognition of the inherent defect of the circular virtual boundary algorithm, this paper introduces a new 
algorithm featuring rotating parallel ray as integration path guidance. With the new algorithm, it is anticipated that 
the location dependence of the integration weight due to the defect in virtual path arrangement will be completely 
eliminated.  

This paper will be arranged as follows: in section II, the old circular virtual boundary algorithm will be briefly 
reviewed.  Subsequently in section III, the detailed explanation of the new rotating parallel ray algorithm for 2D 
pressure reconstruction will be presented. The capability and the accuracy of the new code in reconstructing the 
instantaneous pressure distribution using synthetic images of rotational stagnation flows will be shown in Section 
IV.  Further testing and validation of the new code using the Johns Hopkins University isotropic turbulence database 
will be presented in Section V. 

II. Review of the Circular Virtual Boundary Omni-Directional Integration Method  
The essence of the pressure reconstruction method introduced by Liu and Katz6-9 is the Circular Virtual 

Boundary, Omni-Directional Integration over the entire flow field. Detailed explanation of the method can be found 
in the literature mentioned above. However, for the sake of completeness of the current piece of work, which 
intrinsically stems from the framework formed by the old algorithm, essential description of the old method is 
briefed below.   
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The kernel of the old method is the Omni-Directional Integration.  By summing up the errors embedded in the 
measured pressure gradients from all directions, the omni-integration minimizes the influence of the errors 
propagated to the final pressure result, so as to achieve a reliable and accurate pressure measurement.  This pressure 
gradient integration arrangement is based on the fact that the pressure is a scalar potential, and therefore, spatial 
integration of the pressure gradient must be independent of the integration path. The discrete points distributed 
uniformly along the circular virtual boundary serve as guiding points to define the orientation and position of the 
integration paths. For example, as shown in Fig. 1(a), a group of “virtual” integration paths start at one point and end 
at other points on the virtual boundary, creating a ray pattern of integration guidelines that cover the real field of 
view. The use of virtual boundary is to alleviate the “clustering” of integration paths as described in Liu and Katz7 
(2006). The actual integration starts from and stops at the real boundaries, in a “zig-zag” fashion, along real nodal 
points that have the shortest distance to the integration guidelines. Each time the integration path crosses a certain 
internal node, the result of integration is stored in a data storage bin registered at that internal node. This procedure 
is repeated for all the virtual boundary nodes. Averaging all the values stored in the data bins provides the omni-
directional integration, a procedure that minimizes the uncertainty caused by local errors in the measured pressure 
gradient (dominated by material acceleration for high Reynolds number flow away from wall). The pressure on the 
real boundary is initially obtained by simple line-integration along the real boundary, and is subsequently updated by 
the omni-integration results. Iteration using the updated boundary pressure leads to a converged boundary pressure 
distribution, as described in Liu and Katz7-9 (2006, 2008 and 2013). 

 

 

III. The Novel Rotating Parallel Ray Method  
The novel Rotating Parallel Ray Omni-Directional Integration method is illustrated in Figure 1(b). Unlike the 

virtual boundary omni-directional method, where the virtual integration path is originated from a virtual circular 
boundary with a finite distance from the real boundary of the integration domain, the new method utilizes parallel 
rays as guidance for integration paths. The parallel rays can be effectively viewed as being originated from a 
distance of infinity from the real boundary. By rotating the parallel rays, effectively omni-directional paths with 
equal weights coming from all directions toward the point of interest at any location within the computation domain 
can be generated. In this way, the location dependence of the integration weight due to virtual path arrangement 
inherent in the old algorithm will be eliminated.  
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To implement the Rotating Parallel Ray Omni-
Directional Integration method, the relative position 
of any arbitrary ray as a guideline with respect to the 
domain for pressure reconstruction is determined 
using the sketch shown in Figure 2, where A, B, C and 
D denote the four corner points of a rectangular 
computation domain with a total of (m+1)(n+1) 
nodal points. Point A(i=0, j=0) coincides with the 
origin of the x-y Cartesian coordinate system, while 
side AB goes along the x-axis and side AD along the y-
axis. The two diagonals of the rectangular domain 
intercepts at point E. A line segment EF, with a 
segment length of d, forms an angle of  with respect 
to the horizontal reference line, i.e., the direction of 
the x-axis. A line GH, perpendicular to line EF, 
intercepts line EF at point F, side AB at G and side BC 
at H, respectively. For a definite variable combination 
of (, d), the location and orientation of the guide line 
GH, along with coordinates of G and H, can be fully 
determined from simple trigonometric calculation. 
Thus the integration guideline and subsequently 
integration path is determined. By rotating the angle  and increasing the distance d in discrete fashion with constant 
increments, respectively, parallel ray integration guidelines can be formed, and the improved omni-directional 
integration can then be implemented.   

IV. Accuracy Test using Synthetic Solid Body Rotational Flow 
Based on the Rotating Parallel Ray Omni-Directional Integration algorithm described above, a 2D pressure 

reconstruction code is developed. To validate the code and to determine the accuracy of the new algorithm, we use 
synthetic images of solid-body rotation to reconstruct the pressure distribution and compare them with the 
theoretical values. Synthetic particle images, as shown in Fig. 3, serve as artificial PIV images, from which, velocity 
vector maps are obtained using a Johns Hopkins University in-house developed PIV analysis software (Roth and 



A(i=0, j=0) B (i=m, j=0) 

C (i=m, j=n) D (i=0, j=n) 

E 

d F 

G 

H 

y (j) 

x (i) 

Figure 2.  Interception points of an arbitrary line of  
the parallel ray on the boundaries of a pressure 
reconstruction domain.
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Katz23, 2001).  Following the procedures for the material acceleration calculation outlined in Liu and Katz7 (2006), 
the material acceleration, which is exactly equivalent to the pressure gradient for inviscid flows, is then calculated. 
Finally the pressure reconstruction algorithm is applied and the pressure distribution is obtained.       

The parameters of the simulated flow are the 
same as those in Liu and Katz7 (2006). The 
simulated seed particles are distributed 
homogeneously in a 20482048 pixels image 
using a random number generator available in 
Matlab.  The particle concentration is set to 
maintain an average of 25 particles per 
interrogation window of 3232 pixels. The 
particle size has a Gaussian distribution, with a 
mean diameter of 2.4 pixels and a standard 
deviation of 0.8 pixels.  The intensity of the 
particle image is based on the local integration 
result of a Gaussian intensity distribution with a 
peak grayscale of 240 to reflect the CCD sensor 
integration effect. Particle overlapping is avoided 
by identifying occupied and unoccupied areas 
during the particle allocation process.  Based on 
the first synthetic image, the subsequent three 
planes are generated by displacing the particles 
according to the local theoretical velocity, using 
the analytical expressions for the velocity fields.  
A bilinear interpolation is used for displacing the 
particles. The selected rotation rate of the 
synthetic solid-body-rotation is =0.0625/sec. 
The time interval between exposures is t = 0.5 
sec.  

Figure 4 shows the comparison of the radial distribution of the reconstructed pressure using the Rotating Parallel 
Ray Omni-Directional Integration method against the theoretical pressure values, which gives rise to a 0.30% of the 
standard deviation of the relative error, a significant improvement from the 1.03% relative error of the reconstructed 
pressure using the Circular Virtual Boundary Omni-Directional Integration method. During the computation, the 
rotating angle increment is  = 0.3°, and the parallel ray separation is d/h = 0.4.  

   2
max

25.0 rpp center     2
max

25.0 rpp center 

 

Figure 4. (a) Spatial and (b) radial pressure distributions integrated from the material acceleration 
for the synthetic rotational flow using Rotating Parallel Ray Omni-Directional Integration method.  

(a)  (b) 

Figure 5. Contour plot of the standard deviation of the error 
in the reconstructed pressure obtained by using the rotating 
parallel ray algorithm for the synthetic solid-body rotation 
flow as a function of parallel ray spacing d and ray rotating 
angle increment .

   2
max

22 5.0 rpp exact 
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Apparently, the standard deviation of the error of the reconstructed pressure using the rotating parallel ray 
algorithm is a function of the parallel ray spacing d and the ray rotating angle increment . Figure 5 shows the 
contour plot of the relative error of the reconstructed pressure using the rotating parallel ray algorithm for the 
synthetic solid-body rotation flow in the parameter space of ray spacing d and ray rotating angle increment .  As 
shown in Fig. 5, the relative error of the reconstructed pressure varies from 0.3% to 0.4% within the range of 0.2 < 
d/h < 0.8, and 0.2° <  < 0.8°. Also within this parameter space, the relative error of the reconstructed pressure is 
less sensitive to the ray spacing d than the ray rotating angle increment , suggesting that  is a more important 
parameter that affects the accuracy in the reconstructed pressure using the rotating parallel ray algorithm. Within the 
parameter domain investigated, there is no closed local minima of the relative error of the reconstructed pressure due 
to the limited size of the parameter space. However, the overal trend shows that the error of the reconstructed 
pressure decreases as  decreses, suggesting a fine ray rotaional angle increment can bring in benefit for the 
improvement of the reconstructed pressure accuracy. Obviously a finer angle increment means a higher 
computational cost. The computational cost associated with parameter optimization will be investigated in the 
subsequent work of the project. 

 

V. Validation using the Johns Hopkins University isotropic turbulence database 
To further validate the pressure reconstruction technique, we apply both the new and old pressure reconstruction 

codes to the pressure gradient fields of a forced isotropic turbulence in a direct numerical simulation (DNS) 
database.  We then compare the “measured” pressure with the DNS pressure distribution.   

The DNS data is obtained from the Johns Hopkins University turbulence database (JHTDB, see Li et al24, 2008). 
It consists of results of a direct numerical simulation of forced isotropic turbulence on a 10243 periodic grid, using a 
pseudo-spectral parallel code.  Energy is injected at each step of simulation to maintain steady state conditions. This 

DNS Pressure Distribution 

Error of Reconstruction  
p = p

Cal  
-  p

DNS
 

Reconstructed Pressure 
(Circular Virtual Boundary 

Omni- Directional Algorithm)  

 Reconstructed Pressure (Parallel-Ray)  
Pressure Error (Parallel-Ray) 

(Omni-Directional) 

(Parallel-Ray)

Figure 6. (a) DNS pressure distribution. (b) Reconstructed pressure using Circular Virtual 
Boundary Omni-Directional Integration algorithm.  (c) Difference between the pressure 
reconstructed using the Circular Virtual Boundary algorithm and the DNS pressure.  (d) 
Reconstructed pressure using Rotating Parallel Ray Omni-Directional Integration algorithm.  
(e) Difference between the pressure reconstructed using the Rotating Parallel Ray algorithm 
and the DNS pressure. 

(a)  

(b)  (c)  

(d)  (e)  D
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injection keeps the energy in modes with wave-numbers less or equal to 2 constant. The database provides 1,024 
instantaneous realizations, which includes the 3 components of the velocity and the pressure in a 222 domain. 
The simulation time-step is 0.0002, and the time interval between stored samples in the database is 0.002, both of 
which are smaller than the Kolmogorov time scale of 0.0446. The grid size is 0.00614, which is slightly larger than 
the Kolmogorov length scale of 0.00287. The Taylor-scale Reynolds number for the isotropic flow is 433.  

As a preliminary effort of the investigation, a sample plane with 256256 grid nodal points is selected from the 
JHTDB isotropic turbulence database, as shown in Fig. 6(a). The pressure distributions reconstructed from the DNS 
pressure gradient using the Circular Virtual Boundary Omni-Directional Integration algorithm and the Rotating 
Parallel Ray Omni-Directional Integration algorithm, are presented in Fig. 6(b) and (d), respectively, with the 
corresponding error distributions shown in Fig. 6(c) and (e). As can be seen from these figures, both methods 
faithfully reproduced the isotropic turbulence pressure distribution, without noticeable differences between 
themselves and the DNS pressure distributions. However, further investigation of the statistics in terms of the 
standard deviation of the reconstructed pressure error normalized by the standard deviation of the isotropic 
turbulence pressure fluctuation indicates that the p/pDNS = 0.57% for the circular virtual boundary algorithm and 
0.56% for the rotating parallel-ray algorithm, indicating the performance of the latter is slightly better than the 
former, thus in agreement with the trend observed from the synthetic solid-body rotational flow.   

 

VI. Conclusion and future work 
A novel pressure reconstruction method featuring Rotating Parallel Ray Omni-Directional Integration is 

introduced.  Equal weights of integration involvement can be achieved, thus eliminating the location dependence of 
the integration weight inherent in the old Circular Virtual Boundary Omni-Directional Integration algorithm.  The 
accuracy of the new algorithm tested with a synthetic rotational flow shows that the normalized r.m.s. error is 
reduced from 1.03% to 0.30%. Improvement is further demonstrated from tests using the Johns Hopkins University 
isotropic turbulence database (JHTDB).  

The standard deviation of the error of the reconstructed pressure using the rotating parallel ray algorithm is a 
weak function of the parallel ray spacing d yet a relatively strong function of the ray rotating angle increment , 
suggesting that  is a more important parameter that affects the accuracy in the reconstructed pressure using the 
rotating parallel ray algorithm. The relative error of the reconstructed pressure varies from 0.3% to 0.4% within the 
range of 0.2 < d/h < 0.8, and 0.2° <  < 0.8°. Within the parameter range investigated, the error of the 
reconstructed pressure decreases as  decreses, suggesting a fine ray rotaional angle increment can bring in benefit 
for the improvement of the reconstructed pressure accuracy.  

Along with continuing validation and refinement, the pressure reconstruction code based on the new rotating 
parallel ray omni-directional integration method will be applied to projects to be conducted at the new San Diego 
State University water tunnel facility. 
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