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Pressure-related turbulence statistics ina two-dimensional opencavity shear layer flowwas investigated experimentally

at aReynolds numberof 4.0 × 104 basedona cavity lengthof 38.1mm.Time-resolvedparticle imagevelocimetry sampled

at 4500 frames per second and 25 × 25 mm field of view was used to simultaneously measure the instantaneous velocity

and pressure distributions. Direct estimate results of the pressure–rate-of-strain, pressure diffusion, and velocity–

pressure-gradient tensor components based on 140,000 measurement samples were presented after a brief review of the

theory about the pressure-related terms in the context of turbulence modeling and a discussion about their role in

determining an accuratemean flow. The analysis is also augmentedwith comparisonswith experimental data obtained at

a higher Reynolds number of 3.4 × 105. The pressure and streamwise velocity correlation changes its sign from negative

values far upstream in the shear layer to positive ones near the trailing corner due to the strong adverse pressure gradient

imposed by the corner. The distribution patterns of the pressure diffusion and the turbulence diffusion are considerably

different, indicating that the conventional practice of modeling the transport terms all together as Laplacians of the

turbulent kinetic energy is not justifiable, at least for the turbulent shear layer flow past a cavity. In the shear layer,

turbulence fluctuation energy is redistributed from streamwise to lateral components. This intercomponent energy

transfer is reversed on top of the trailing corner, indicating the complexity of the flow, especially around the corner area.

Nomenclature

Cp = pressure coefficient
d = displacement of seeding particleswithin the particle image

velocimetry (PIV) interrogation window
L = cavity length
Ue = external freestream velocity
u = streamwise velocity component in the x-direction
�u = time-averaged streamwise velocity component
u 0 = fluctuating streamwise velocity component
v = lateral velocity component in the y-direction
�v = time-averaged lateral velocity component
v 0 = fluctuating lateral velocity component
�w = time-averaged spanwise velocity component
w 0 = fluctuating spanwise velocity component
xa = location of particle group within the PIV interrogation

window
δt = time interval between consecutive PIV images
θ = momentum thickness
ρ = density of water

I. Introduction

T URBULENCE is a fundamental flow phenomenon widely seen
in nature and engineering applications. To accurately quantify

the effects caused by turbulence, adequate physics-based turbulence

modeling is needed. This is of pivotal importance to computational
fluid dynamics (CFD) in particular and the simulation-based
engineering science (SBES) in general. Example application areas
([1], NSF Blue Ribbon Panel report) that would be affected by
physics-based turbulence modeling include, but not limited to,
aerodynamic force prediction for aircraft, automobile, ship propeller,
wind turbine, and jet engine designs; hazardous weather forecasting;
oceanic flow influence on global climate changes; and evaluation of
cardiovascular flow on human heart health.
Consistent with the NSF report, a NASA report CFD Vision 2030

Study: A Path to Revolutionary Computational Aerosciences [2]
places exclusive emphasis on both Reynolds-averaged Navier–Stokes
(RANS) and large-eddy simulation (LES) approaches as the choice
of methods for computational tools to cope with grand challenges
envisioned by 2030. A critical element to the process of achieving
physics-based predictivemodeling is high-quality experimental data at
realistic high Reynolds numbers. However, lack of data, especially the
experimentally obtained pressure-related terms, for example, pressure
diffusion and pressure–rate-of-strain terms in the Reynolds stress
transport equation, has greatly hindered the development of physics-
based turbulence models. As noted by the NASA CFD Vision
2030 report, RANS turbulence models have nearly seen stagnant
development for 20 years [2,3]. It is based on this observation that this
paper attempts to present some recently obtained experimental data on
the pressure-related statistical terms for a turbulent shear layer flow
over an open cavity.
Major difficulties that result in the prolonged lack of experimental

data on pressure-related turbulence statistics reside in the lack of
reliable means for simultaneous measurement of instantaneous
pressure and velocity distributions in flow field. In the past decade
or so, efforts in developing nonintrusive pressure measurement
techniques have been carried out extensively in the fluids community.
It is shown that the instantaneous pressure distribution in an
incompressible turbulent flow field can be reconstructed by
integration of themeasuredmaterial acceleration, as demonstrated by
Liu and Katz [4–8], van Oudheusden [9], Ragni et al. [10], and Joshi
et al. [11], to name a few. The material acceleration constitutes the
dominant contributor to pressure gradientwith theviscous term being
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negligible for flow at highReynolds number and away fromwall, and
can be measured nonintrusively using particle image velocimetry
(PIV), either discretely [4–7] or continuously [8,11] time-resolved.
Once the material acceleration is obtained, the pressure gradient is
known. Further integrating, the pressure can be obtained. So far there
are three major types of integration methods: direct line integration,
Poisson equation, and least-square reconstruction that have been
introduced anddeveloped for pressure reconstruction from themeasured
material acceleration. For direct line integration, representative method
is the so-called circular virtual boundary, omni-directional integration
[4–8] over the entire measurement domain, which was evolved recently
to a new algorithm featuring rotating parallel ray [12] as integration path
guidance. This new “rotating parallel ray” omni-directional integration
algorithm was recently successfully applied to three-dimensional (3D)
pressure reconstruction based on time-resolved tomographic PIV
measurement of a turbulent channel flow over compliant wall [13]. A
simplified multiple-line integration approach was proposed by Dabiri
et al. [14], inwhich the pressurewas reconstructed usingmedian polling
of the integration results along several integration paths originated from
typically eight surrounding directions. However, as demonstrated by
Wang et al. [15], the eight-path integration of Dabiri et al. [14] suffers
from a considerable compromise in pressure reconstruction accuracy in
comparison with Liu and Katz’s omni-directional approach, although
the amount of computation of the former is significantly reduced when
comparedwith the latter. Representative Poisson equation approach can
be found in de Kat and vanOudheusden [16,17], Violato et al. [18], and
Auteri et al. [19]. Review and comparison of the direct line integration
and Poisson equation pressure reconstruction approaches can be found
in Charonko et al. [20] and van Oudheusden [21]. The robustness of the
omni-directional integration method has been confirmed by Charonko
et al. [20]. The least-square reconstruction approach [22] was recently
used to experimentally obtain instantaneous pressure field in awake of a
separated flow over an airfoil. This approach was also referred to as
directmatrix inversionbyLiu andKatz [5].Actually, as demonstratedby
Wang et al. [23], the least-square approach is mathematically equivalent
to the Poisson equation approach with Neumann boundary conditions.
In addition to the above integration approaches, recently several new

methods were introduced for pressure reconstruction. For example,
with time-resolved 3D3C velocity field data available, Tronchin et al.
[24] demonstrated the feasibility of using a conventional CFD
pressure reconstruction approach to iteratively solve the discretized
Eulerian-based Navier–Stokes equation over a “chimera mesh,”
treating the pressure as anunknownquantity and themeasured velocity
components as known ones. Using a Poisson solver, Neeteson and
Rival [25] proposed a Lagrangian finite-volume method to obtain
pressure values at particle positions determined by the Shake The Box
(STB) algorithm [26]. In contrast to the conventional Poisson
approach, Huhn et al. [27] introduced a method of 3D pressure field
reconstruction in the Fourier space using a Fast Fourier Transform
(FFT) method. Exploiting the curl-free property of the pressure
gradient as a constraint,Wang et al. [15] developed a proper orthogonal
decomposition (POD)–based pressure reconstruction approach, with
the curl-free constrained POD as an error reduction treatment and the
simple cross-line integration as the final step for obtaining the pressure.
Most recently, vanGent et al. [28], using a simulated experiment froma
zonal detached eddy simulation of an axisymmetric base flow atMach
0.7, conducted amassive comparison study for pressure reconstruction
methods, including the Poisson solver [17], least-square [22], FFT
[27], Taylor’s hypothesis and Poisson solver [29], and Voronoi-
Lagrangian finite-volume–based Poisson solver [25], and concluded
that, although with different degrees of accuracy in reconstructed
pressure distributions, all methods were able to capture the main
features of the instantaneous pressure fields, including the method of
de Kat and Ganapathisubramani [29], which reconstructs the pressure
from a single PIV velocity snapshot based on Taylor’s hypothesis for
acceleration estimate.
The aforementioned efforts in PIV-based pressure measurement

tool development provide the possibility of measuring much-needed
pressure-related statistics in turbulent flows. In particular, this paper
reports the results of the planar pressure diffusion and pressure–strain
terms measured in a cavity shear layer flow at a Reynolds number of

40,000 based on the cavity length, using the virtual boundary
omni-directional pressure reconstruction method. We need to
recognize that before the results presented in this paper, there have
been plenty of numerical based data on pressure-related turbulence
statistics, obtained either using direct numerical simulation (DNS)
(e.g., [30–32]), or LES (e.g., [33]). Also there have been attempts to
measure the planar pressure diffusion and/or pressure–rate-of-strain
terms either directly or indirectly before. For example, Kawata and
Obi [34]measured pressure-related statistics for a cylinderwake flow
at a diameter-based Reynolds number of 7800 by reconstructing the
POD modes of pressure with a two-dimensional (2D) Poisson
equation. Liu and Thomas [35], Gutmark and Wygnanski [36], and
Wygnanski and Fiedler [37] obtained pressure diffusion estimates by
balancing all other terms in turbulence kinetic energy transport
equation. As for point pressure–velocity correlation measurement,
representative efforts using combination of pressure and X-wire
probes include those of Kawata et al. [38] in a near wake flow,
Terashima et al. [39] in a planar jet, Naka and Obi [40] in free shear
flows, and Naka et al. [41] in a mixing layer. It is worth mentioning
that as an earlier effort using a four-hole cobra probe, Hooper and
Musgrove [42] conducted point pressure–velocity correlation
measurement in a turbulent pipe flow.
The organization of this paper is as follows. Section II briefly

reviews the theory about the pressure-related turbulence transport
terms. Section III presents the experimental setup. Section IV
describes the material acceleration and the nonintrusive pressure
measurement techniques used in the experiment. The measurement
results are shown in Sec. V, which is followed by discussion and
conclusion in Sec. VI.

II. Theory About Pressure-Related Turbulence Terms

As summarized by Pope [43], RANS turbulence models can be
classified into two major classes: the turbulent-viscosity models and
the Reynolds-stress and related models. The turbulent-viscosity
models, listed in order of increasing level of description, include
mixing length (e.g., [44,45]), one-equation νT (e.g., [46–48]), one-
equation k − lm (i.e., Prandtl’s one-equation model), two-equation
k − ε (e.g., [49,50]), and two-equation k − ω (e.g., [51,52]) models.
Compared with the turbulent-viscosity models, the Reynolds-stress
models do not require turbulent-viscosity hypothesis, thus eliminating
one of the major defects of the turbulent-viscosity models. In
Reynolds-stress models, individual Reynolds stresses are solved from
the following transport equation:

D

Dt
�u 0

i u
0
j�

Material derivative of Reynolds stress�unsteady�convection terms�
� −

∂
∂xk

u 0
i u

0
ju

0
k

Turbulence diffusion

� ∂
∂xk

�
ν

∂
∂xk

u 0
i u

0
j

�
Viscous diffusion

� Pij
Production

� Πij
Velocity-pressure-gradient

− εij
Dissipation

(1)

where the velocity–pressure-gradient tensor

Πij � −
1

ρ

�
u 0
i

∂p 0

∂xj
� u 0

j

∂p 0

∂xi

�
(2)

can be further decomposed into pressure diffusion

−
∂Tp

kij

∂xk
� −

1

ρ

�∂u 0
jp

0

∂xi
� ∂u 0

i p
0

∂xj

�
(3)

and pressure–rate-of-strain tensors,

Rij �
p 0

ρ

�
∂u 0

i

∂xj
� ∂u 0

j

∂xi

�
(4)

that is,
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Πij � Rij −
∂Tp

kij

∂xk
(5)

Please note that the above decomposition of the velocity–pressure-
gradient tensor is not unique. The decomposition is intended to
facilitate turbulencemodeling, as describe by Pope [43]. The velocity–
pressure-gradient tensor and the associated decomposition are
critical for understanding and modeling turbulence [43,53,54]. In the
process of turbulence kinetic energy (TKE) transport, the pressure
diffusion represents the mechanism due to pressure fluctuation for
the redistribution of TKE from places where the energy is newly
generated, to places where there is a lack of the new TKE, so as to help
the turbulence field to become more homogeneous [35]. In contrast,
the pressure–rate-of-strain terms, as indicated by the equation

R11 � R22 � R33 � 0 (6)

are responsible for redistribution of energy among components of the
turbulence normal stresses, that is, intercomponent energy transfer
among fluctuating components. This intercomponent energy transfer
serves as the primary mechanism for the return-to-isotropy process
[43] of the anisotropic turbulence commonly seen in turbulent shear
flows, thus playing a major role in defining turbulence development.
Two equation models like k − ε make no attempt to differentiate
between the three fluctuating velocity components. Indeed if the
transport equations for components of Reynolds normal stresses u 02,
v 02, and w 02 are summed, pressure–rate-of-strain terms disappear
altogether and sodonot appear in the turbulent kinetic energy transport
equation.
In the popular eddy viscosity models of the RANS simulation

approach, a common practice is to combine the transport terms and
model them as [43,55–58]:

1

ρ
p 0u 0 � 1

2
u 0
i u

0
ju

0
j − 2νu 0

js
0
ij � −

νT
σk

∇k (7)

where σk is usually taken as 1, based on the assumption that pressure
diffusion follows the same pattern as that of the turbulence diffusion.
However, there is no physical justification for this assumption. The
situation becomes even more complicated if onewants to use a better
Reynolds stress model and solve approximated evolution equations
for Reynolds stresses. ModelingRij orΠij has been amajor obstacle,
in substantial part due to lack of pressure data, which hinders the
understanding of the correct relationship between these pressure
terms and other relevant ones such as the production and the
Reynolds stress terms. As a result, even arguments about validity of
models are based on postulated theoretical arguments, for example,
asymptotic conditions (rapid distortion theory) as opposed to direct
comparisons to measured pressure–strain terms.
Traditionally, the pressure–rate-of-strain term has been decom-

posed to rapid, slow, and harmonic parts, and numerous models have
been introduced [43,59]. For example, the popular LRR-IP model
combines both slow and rapid terms [60,61]:

Rij � −CR

ε

k

�
u 0
i u

0
j −

2

3
kδij

�
− C2

�
Pij −

2

3
Pδij

�
(8)

Comparisons of the above relationship with DNS data of Rogers
and Moin [62] show reasonable agreement in some terms and
substantial discrepancy in others even for a planar shear flow at low
Reynolds numbers [43]. There is no universally accepted model for
the pressure-related terms [63,64], and all models have substantial
fundamental deficiencies. This understanding is further confirmed
through the NASA 2004 Computational Fluid Dynamics Validation
Workshop on Synthetic Jets and Turbulent Separation Control
(CFDVAL2004) and its subsequent validation efforts (e.g., [33,65]).
In particular, for Case 3 of the CFDVAL2004 workshop, which
investigates a turbulent flowover awall-mounted hump (NASAhump)
with a Glauert-Goldschmied–type airfoil shape contour reveals,
the turbulent boundary-layer separation imposes great challenges to

simulation, as evident from the underpredicted turbulent shear stresses
in magnitude inside the separation bubble, and the correspondingly
overpredicted size of themean separationbubble that leads to a delayed
predicted reattachment. A recent investigation of the hump flow [59]
further indicates that the near-wall inhomogeneity causes pressure–
rate-of-strainmodels topredict incorrect signs for the normal pressure–
strain components close to thewall. These examples demonstrate how
important it is to accurately characterize the behavior of the pressure-
related terms in order to accurately determine the mean flow.
To obtain a better understanding of the complex relationships

among the turbulence quantities, especially the pressure-related
terms, in this paper we present pressure-related turbulence statistics
in a 2D open cavity shear layer flow, with a focus on the flow field
around the shear layer impingement point on the trailing corner of the
cavity. These data can be used for calibration and improvement of the
turbulence models such as Eqs. (7) and (8).

III. Experimental Setup

The experiment has been conducted in a small water tunnel
described by Gopalan and Katz [66] and Liu and Katz [5]. Details
about the experimental setup can be found by Liu and Katz [8]
(hereinafter referred to as LK13) as well as Liu and Katz [6]
(hereinafter referred to as LK07). To present the new information on
the pressure-related statistics, only essential features about the setup
are repeated here. As sketched in Fig. 1, a 38.1-mm-long, 50.8-mm-
wide, and 30.0-mm-deep 2D cavity model is constructed of a
transparent acrylic insert that is installed in the 50.8 mm �width� ×
63.5 mm �height� test section. Thus the tunnel height (63.5 mm)
versus the step and cavity height (30.0mm) is 2.12∶1. A 13-mm-long
regionwith tripping grooves, eachwith a notch depth of 0.46mmand
width of 1.00mm, is machined at the beginning of the bottomwall of
the test section in order to trip the boundary layer. Thus, the
separating boundary layer at the beginning of the cavity is turbulent.
Formost of the experiments described in this paper, themeanvelocity
above the cavity is U∞ � 1.20 m∕s, corresponding to a Reynolds
number of 4.0 × 104 based on cavity length. Themean pressure in the

Flow Direction 

Leading Edge Trailing Edge 

Cavity  
Wall  

L=38.1 mm

H=30.0 mm 

Field of View (25 25 mm) 

high speed 
camera

test section

2D cavity model

Fig. 1 Experimental setup and cavity geometry.
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water-tunnel facility is well above the conditions that would
cause occurrence of cavitation during the PIV measurements. The
streamwise length of the cavity normalized by the momentum
thickness of the boundary layer at the leading edge of the cavity,
L∕θ0, is 127, sufficiently large for self-sustained shear layer
oscillation. Based on Gharib [67] and Gharib and Roshko [68], the
minimum L∕θ0 for such oscillation is about 80. The origin of the
coordinate system used in this paper is placed at the leading edge of
the cavity, with the x and y axes pointing downstream and upward,
respectively. The instantaneous, ensemble averaged, and fluctuating
horizontal and vertical velocity components are denoted as u, v, �u, �v,
u 0, and v 0, respectively.
To perform time-resolved, 2D PIV measurements, we use a

PhotonicsDM60-527Nd:YLF laser that has amaximumpulse rate of
10 kHz, and pulse width of 100 ns. The images are recorded at 4500
frames per second using a PCO.dimax CMOS camera, at a resolution
of 1008 × 1000 pixels, giving aNyquist frequencyof 2250Hz for the
velocity and 563 Hz for the material acceleration and pressure
(see Sec. IV for explanation). To synchronize the laser with the
camera, we use a Quantum Composer model 9618 pulse generator.
The selected temporal resolution is sufficient for resolving the
Kolmogorov time scale, found to be 673 μs, based on curve fits to the
spatial energy spectra for the dissipation rate estimate. The size of
the field of view is 25 × 25 mm to maintain sufficient resolution,
requiring us to record data in multiple adjacent sample areas, all
alignedwith the central plane of the cavity setup.With an appropriate
concentration of seed particles, 8–12-μm-diam hollow glass spheres
with specific gravity of 1.05–1.15, we are able to use an interrogation
window size of 16 × 16 pixels, corresponding to 0.4 × 0.4 mm. This
size is similar to the estimated Taylor transverse microscale of
0.5 mm, but is an order of magnitude larger than the Kolmogorov
length scale of 26 μm. A 50% overlap between the interrogation
windows gives a vector spacing of 0.2 mm. We use in-house
developed software [69,70] for calculating the velocity. A total of
four sample areas with the same field-of-view size, but shifted
horizontally with 50% overlap, are used to cover the flow field, from
the boundary layer upstream of the leading corner to the flow over the
trailing corner. The present analysis focuses on the field of view that
covers the cavity trailing corner, where we have processed and
analyzed 14 statistically independent datasets, with each set being
acquired separately in timewith sufficiently long time intervals. Each
set consists of 10,000 sequentially obtained instantaneous realizations
over a period of 2.22 s (i.e., about 3.8 flapping cycles of the slowest
characteristic unsteady motion of the shear layer). Thus a total of
140,000 instantaneous realizations over a collectively 31 s of sampling
time accumulated from the 14 statistically independent sampling
segments have been analyzed. These datasets cover a total of 53
flappingcycles for the trailingcornermeasurement station,which turns
to be sufficient to ensure the convergence of the associated ensemble-
averaged statistics (will be discussed in details in Sec. V.F).
We have also used velocity distributions obtained previously at a

higher Reynolds number (3.4 × 105 [4–7]) using a larger format
camera, at the same spatial resolution (interrogation window of
0.4 × 0.4 mm), but at a much lower sampling frequency (2 Hz). In
those measurements, the data consist of ensembles of 860 realizations
that are not continuously time-resolved. The field of view is 50.8 ×
50.8 mm covering the entire cavity, the vector spacing is 0.2 mm,
and the free stream velocity is 10 m∕s. The pressure-related terms for
this large field-of-view experiment (Reynolds number 3.4 × 105) will
also be presented as a comparison to those obtained from the
aforementioned detailed small field of experiment (Reynolds number
of 4.0 × 104).
For all these experiments, the planar PIV measurements were

conducted at the central span of the cavity flow field, where the flow
field is 2D in the mean, and the instantaneous 3D effect is expected to
be minimal compared with other planes in the spanwise direction.

IV. Analysis Procedures

The procedures for obtaining the velocity and the material
acceleration, though still following the principle described by

Liu and Katz [5], have been modified to take advantage of the time
resolved data series. Analysis of each pair of consecutive images
provides an instantaneous velocity distribution, and the entire set
provides a time series u1, u2, u3; : : : ; uM, where M denotes the
final sequential number for the velocity time series in a data set.
Five consecutive images are used for calculating the acceleration.
To calculate the velocity field at time ti, we use

ui�xa; ti� �
di;i�1�xa; ti� − di;i−1�xa; ti�

2δt
(9)

where di;i�1 is the displacement of particles obtained from cross-
correlating the interrogation window in image i with that in image
i� 1. Thus, ui�xa; ti� is based on an average of di;i�1 and −di;i−1
of a group of particles located at xa at time ti. We stagger our
image pairs to ensure that the same particle groups are followed
within the thickness of the laser sheet, an inherent requirement to
obtain reliable material acceleration. The in-plane projection of
material acceleration is calculated using

Dui
Dt

�xa; ti� ≈
ui�1�xa � di;i�1; ti�1� − ui−1�xa � di;i−1; ti−1�

2δt
(10)

This approach estimates the material acceleration components
from the difference between the velocity of the same group of
particles at ti�1 and ti−1 as long as the majority of the particles
remains within the light sheet. It is based on the assumption that the
particles are displaced by the local velocity. Based on Eqs. (9) and
(10), a total of five consecutive images (i − 2, i − 1, i, i� 1, i� 2)
are involved in the determination of the material acceleration, and
subsequently, the pressure distribution. Thus the temporal resolution
of the material acceleration and the pressure measurement is
888.9 μs (4δt), giving rise to a corresponding Nyquist frequency of
563 Hz. Because the displacements involve fraction of the vector
spacing, calculation of the acceleration involves bi-cubic
interpolation.
The instantaneous pressure distribution is obtained by integrating

the measured in-plane component of the material acceleration using
circular virtual boundary omni-directional integration. For high-
Reynolds-number flows away from the wall, the material acceleration
is much larger in magnitude than the viscous terms, as confirmed by
direct calculations, and is balanced by the pressure gradients. The
kernel of the pressure reconstruction procedure is the omni-directional
integration. By summing up the errors embedded in the measured
pressure gradients from all directions, the omni-integration minimizes
the influence of the errors propagated to the final pressure result, so as
to achieve a reliable and accurate pressure measurement. A history
about the evolution of the omni-directional integration algorithm can
be found in Liu et al. [12].

V. Measurement Results on Pressure-Related
Turbulence Statistics

Unless otherwise specified, data presented and analyzed in this
paper are primarily focused on and refer to those obtained in the
detailed small field of view experiment with Reynolds number of
4.0 × 104. However, whenever necessary, data obtained from the
large field of view experiment with Reynolds number 3.4 × 105 will
also be presented for comparison and completeness of the analysis.

A. Mean Flow Fields and Reynolds Stress Distributions

Details about the time-averaged flow features are discussed in
LK13. To facilitate the analysis of the pressure-related turbulence
terms, the time-averaged velocity, pressure, and vorticity distributions
around the leading and trailing corners of the cavity are presented
in Fig. 2 (adapted from LK13 with permission). Corresponding
distributions of in-plane normal and shear Reynolds stress components
as well as RMS values of pressure fluctuations are reprinted in Fig. 3
(again adapted from LK13). As shown in Fig. 2f, when the shear layer
approaches the downstream corner, it is subjected to an adverse
pressure gradient in the vicinity of the trailing corner, and therefore
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decelerates, forming amean stagnation point 1mm(0.026L) below the
trailing corner. After impingement on the corner, the shear layer
separates with one part climbing around the corner, and the other

entrained into the cavity along the vertical wall. When the flow
accelerates around the corner, it creates a pressure minimum on top of
it, at about 0.013L downstream from the tip. Although the mean

Fig. 2 Distributions of ensemble averaged (a, b) horizontal velocity, (c, d) vertical velocity, (e, f) pressure, and (g, h) spanwise vorticity around the leading
(a, c, e, g) and trailing (b, d, f, h) corners of the 2D cavity. Note that the contour lines represent constant increments in (a–d), and varying increments in
(e–h). (Adapted from Fig. 4 of Liu and Katz [8]. Reprint with permission from Cambridge University Press.)
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velocity remains positive above the corner, at least at the scale of the
PIV interrogation windows, examination of the particle traces shows
that reverse flow occurs intermittently above the wall at scales that are
below about 0.1 mm, that is, a small fraction of the window size.

The mean vorticity distributions (Figs. 2g and 2h) show the
expansion of the shear layer across the cavity, which involves a six
times decrease in magnitude of vorticity, and formation of a
negative vorticity peak on top of the trailing corner, mainly due to

Fig. 3 Distributions of (a, b) streamwisenormal stress, (c, d) lateral normal stress, (e, f)Reynolds shear stress, and (g, h) rmsvalues of pressure fluctuation
around the leading (a, c, e, g) and trailing (b, d, f, h) corners of the 2D cavity. (Adapted from Fig. 5 of Liu and Katz [8]. Reprint with permission from
Cambridge University Press.)
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pressure-gradient-induced local vorticity production (LK13) there.
Layers of positive vorticity form along the walls inside the cavity
and some of this positive vorticity is entrained into the beginning of
the shear layer.
The largest streamwise normal stress u 02 (Fig. 3b), with values that

are roughly 60% higher than those in the shear layer, occur on top of
the trailing corner. The highest v 02 (Fig. 3d) is measured in the shear
layer, with peak values that are roughly one half of the streamwise
component. The turbulence level alongwith the shear stress decays as
remnants of the shear layer split and are transported above the trailing
corner and into the cavity. As expected, along both walls, the velocity
fluctuations in the wall-normal direction are lower than the wall-
parallel one. One noteworthy phenomenon is the change in Reynolds
shear stress sign just above the tip of the corner (Fig. 3f). It is caused
by high negative production rate of the Reynolds shear stress there
due to the large negative values of u 02∂ �V∕∂x that occur as the wall-
normal velocity decays rapidly around the corner.

B. Pressure–Velocity Correlation

As shown in Eq. (3), the pressure diffusion term involves the
pressure–velocity correlation. Thus to investigate the behavior of the
pressure diffusion, distributions of pressure–velocity correlation,
including p 0u 0 and p 0v 0, are examined and shown in Fig. 4 for the
experiment with small field of view (Reynolds number of 4.0 × 104)
and Fig. 5 for the experiment with large field of view (Reynolds
number of 3.4 × 105). To further verify the observed variations of the
pressure–velocity correlation in the shear layer and around the cavity
trailing corner, we compare the probability density function (PDF)
profiles for the experiment with small field of view (Reynolds
number of 4.0 × 104) in Fig. 6 for both p 0 − u 0 and p 0 − v 0
correlations at three representative locations, which are indicated in
Fig. 3h. Point A (x∕L � 0.70, y∕L � 0.01) is located in the shear
layer upstream of the trailing corner, and is used as a reference for the
“undisturbed shear layer”; point B (x∕L � 0.99, y∕L � −0.01) is
located in the high-pressure region just upstream of the corner; and

Fig. 4 Distribution of pressure–velocity correlations obtained at Reynolds number of 4.0 × 104: a) correlation between the pressure and the streamwise
velocity component p 0u 0; b) correlation between the pressure and the lateral velocity component p 0v 0.

Fig. 5 Distribution of pressure–velocity correlations obtained at Reynolds number of 3.4 × 105: a) correlation between the pressure and the streamwise
velocity component p 0u 0; b) correlation between the pressure and the lateral velocity component p 0v 0.
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point C (x∕L � 1.016, y∕L � 0.01) is located within the
previously discussed pressure minimum region on top of the
corner. Characteristics of these pdf profiles shown in Fig. 6 are
summarized in Table 1.
As can be seen in Figs. 4a and 5a, in most of the shear layer, u 0 and

p 0 are negatively correlated. Correspondingly we see a negatively
skewed p 0 − u 0 profile at location A in Fig. 6a. This negative
correlation implies that the pressure decreases as the instantaneous
flow locally accelerates in the streamwise direction, and vice versa,
that is, an inertial “Bernoulli type” relation. Hooper and Musgrove
[42], using a cobra (4-hole) probe, also report strong negative
correlations between fluctuating pressure and streamwise velocity
component in a developed pipe flow.
However, when the flow approaches the trailing edge of the cavity

as shown in Figs. 4a and 5a, due to the presence of the adverse
pressure gradient, the negative correlation of p 0u 0 gradually
decreases in magnitude and eventually changes its sign, creating a
positive peak just upstream of the trailing corner. This trend is
associated with the adverse mean pressure gradients and stagnation-
like conditions near the cavity trailing corner (see Fig. 2f). As the
momentum increases in the impinging shear layer (thus resulting a
positive velocity fluctuation locally), the local adverse pressure
gradient also increases (thus resulting a positive pressure fluctuation
locally).Consequently, the pressure–velocity correlationp 0u 0 becomes
positive.Correspondingly, a highly positively skewedp 0 − u 0 profile at
location B can be found in Fig. 6a.
As for the p 0v 0 correlation shown in Figs. 4b and 5b, p 0 and v 0 are

positively correlated in most of the shear layer. To explain this trend,
it is sufficient to note that essentially in all shear flows u 0 and v 0 are
inherently negatively correlated. A downward flow, that is, negative
v 0, brings high-momentum fluid to the shear layer, that is, a positive
u 0. However, sinceu 0 andp 0 are negatively correlated,p 0 is negative.
Therefore, in this situation, p 0 and v 0 are positively correlated in the
shear layer. As the shear layer approaches the trailing corner, this p 0
and v 0 correlation also changes sign in front of the trailing corner due
to adverse pressure gradient. However, unlike the situation of
p 0u 0 shown in Fig. 4a, p 0v 0 continuously maintains its negative
correlation value in the area surrounding the trailing corner, as shown
in Fig. 4b. These trend are consistent with the p 0 − v 0 profiles shown
in Fig. 6b.

The negative correlation values of p 0u 0 and p 0v 0 above the cavity
trailing corner (Fig. 4) can be comprehended by examining the
velocity and pressure distributions around cavity trailing corner as
shown in Figs. 2b, 2d, and 2f.On average,when a fluid particle passes
over the trailing corner, it is subjected to a favorable pressure
gradient. When the favorable pressure gradient is intensified, a
positive u 0 and a positive v 0, together with a negative p 0, would be
found above the trailing corner. Conversely, when the favorable
pressure gradient is attenuated, negative u 0 and v 0 values as well as a
positive p 0 would occur on top of the trailing corner, thus causing a
negative correlation value of p 0u 0 and p 0v 0 there.
The overall trend shown in Fig. 6 and Table 1 in terms of the mean

statistical values p 0u 0 and p 0v 0 are consistent with the previous
discussions about Figs. 4 and 5. In addition, as shown in Fig. 6, there
are two major features associated with the pressure–velocity PDF
profiles at these representative locations. First, no matter whether the
point is located in the shear layer or around the trailing corner, the
peaks of these PDFprofiles are all located at the zero correlationvalue
location, which means that for the majority of time in the shear layer
and around the corner, pressure and velocity are not correlated.
Second, the profile shapes are all asymmetric with respect to the zero
correlation value location, thus giving rise to nonzero skewness
values for these PDF profiles. Because the peaks of the PDF profiles
are locked around zero, it is the shape asymmetry or skewed
distribution that determines the final mean values of the pressure–
velocity correlation. In other words, it is the less-frequent flow events
that alter the shape (in terms of skewness) of the PDF profiles and
subsequently determine the mean value of the pressure–velocity
correlation. As a matter of fact, examination of Table 1 (which is
consistent with Fig. 6) shows that the negative skewness values of
p 0 − u 0 PDF profiles at points A and C correspond to negative mean
values of p 0 − u 0 at these locations, whereas a positive skewness
value of p 0 − u 0 at point B corresponds to positive mean values of
p 0 − u 0 at that location. Similar relationship between the skewness
and mean correlation value exists for the p 0 − v 0 correlations shown
in Table 1. Moreover, it seems that the skewness is monotonically
associatedwith themean pressure–velocity correlationvalues; that is,
large magnitude of skewness values are associated with large
magnitude of mean values of the pressure–velocity correlation, and
vice versa.

Fig. 6 Comparison of probability density function profiles of a) correlation between the pressure and the streamwise velocity component p 0u 0 and
b) correlation between the pressure and the lateral velocity component p 0v 0 for points A, B, and C indicated in Fig. 3h.

Table 1 Statistics about pressure–velocity correlations at representative locations indicated in Fig. 3h

p 0u 0∕�ρU3
e� p 0v 0∕�ρU3

e�
Location Mean Standard deviation Skewness Kurtosis Mean Standard deviation Skewness Kurtosis

A −1.1 × 10−3 9.0 × 10−3 −0.60 10.6 5.5 × 10−4 6.9 × 10−3 0.45 13.0
B 5.2 × 10−3 11.5 × 10−3 2.08 11.7 −2.0 × 10−3 9.3 × 10−3 −0.64 9.7
C −4.1 × 10−3 16.0 × 10−3 −1.84 14.0 −2.2 × 10−3 7.4 × 10−3 −3.01 27.2
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Another quantity describing the characteristic shape of the PDF
profiles is kurtosis. As shown in Table 1, the PDF profiles for both
p 0 − u 0 and p 0 − v 0 correlations at the representative locations all
have extremely high kurtosis values of ∼O�1000σ�, with σ being
the standard deviation of the corresponding pressure–velocity
correlation distribution. These high kurtosis values indicate that the
PDF profile shapes strongly deviate from that of the Gaussian
distribution, for which the kurtosis value is only 3σ. Also these
extremely high kurtosis values can be viewed as an evidence that
shows the less-frequent flow events play an important role in
determining the mean values of the pressure–velocity correlations.

C. Triple Velocity Correlation Distribution

To facilitate the subsequent discussion in Sec. V.D about pressure
diffusion and turbulence diffusion, distributions of triple velocity
correlations u 03, u 02v 0, u 0v 02, and v 03 are shown in Figs. 7a–7d,
respectively.As shown inEq. (1), these triplevelocity correlations are
the basis for the calculation of the turbulence diffusion terms. One
striking feature for the plots shown in Fig. 7 is that the distribution
patterns of u 03 and u 0v 02 are very similar in shape, yet with different
magnitude at corresponding locations (Figs. 7a and 7c). Same type of
similarity exists for the distribution patterns of u 02v 0 and v 03 (Figs. 7b
and 7d) as well. These similarities in distribution pattern can be
comprehended by looking into the role that u 0 and v 0 play in these
triple correlation terms. Actually, u 03 and u 0v 02 can be viewed as the
turbulence transport (i.e., turbulence diffusion) of the Reynolds

normal stresses u 02 and v 02 by the u-component fluctuation u 0. Since
u 02 and v 02 distributions as shown in Figs. 3a–3d are very similar in
most part of the shear layer flow over the cavity, the transport
(diffusion) of u 02 and v 02 by the same u 0 fluctuationmechanismmust
be also very similar. For the same reason, since the triple correlation
terms u 02v 0 and v 03 represent the transport of u 02 and v 02 by the same
v 0 fluctuation, the distribution patterns of these two triple correlation
terms also appear to be similar.
Another feature for the triple velocity correlation distributions is

that the values in the upper strips of the u 02v 0 and v 03 distributions are
positive, whereas their lower parts are negative (Figs. 7b and 7d). As a
contrast, reversed patterns can be found for u 03 and u 0v 02
distributions (Figs. 7a and 7c). Between the two upper and lower
strips is the central strip with zero triple correlation values. This
feature can be comprehended by examination of the turbulence
diffusion mechanism. As shown in Figs. 3a–3d, the local highest

values of Reynolds normal stresses u 02 and v 02 are located at the
central strip of the shear layer. These high Reynolds normal stresses
are transported to the upper and lower edges of the shear layer by v 0
through the turbulence diffusion mechanism. Because the upward
transport to the upper edge requires positive v 0 fluctuations,u 02v 0 and
v 03 therefore exhibit positive values in the upper strip of the shear
layer. For the similar reason, u 02v 0 and v 03 exhibit negative values in
the lower strip of the shear layer due to downward v 0 motion.
Because the measurements are conducted at the central span of the

cavity flow field and the flow is 2D in themean ( �w � w 0 � 0),u 0 and

Fig. 7 Distribution of triple velocity correlations obtained at Reynolds number of 4.0 × 104: a) u 03 correlation; b) u 02v 0 correlation; c) u 0v 02 correlation;
and d) v 03 correlation.
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v 0 conform with the continuity equation as known from Reynolds
decomposition. Thus, in a statistics sense, a positive v 0 fluctuation
corresponds to a negativeu 0 fluctuation, and vice versa. Therefore, in
contrast to u 03 and u 0v 02, reversed distribution patterns exist for
u 02v 0 and v 03 distributions. Also please note that since statistically u 0
has higher fluctuation magnitude than v 0 as shown in Figs. 3a–3d,
correspondingly u 03, u 02v 0, u 0v 02, and v 03 exhibit a descending order
of magnitudes in their distributions as shown in Fig. 7.

D. Pressure Diffusion Distribution and Comparison with Turbulence
Diffusion and Turbulence Production Terms

Based on the distributions of the pressure–velocity and the triple
velocity correlations, the corresponding pressure diffusion (also
called the gradient of the Reynolds stress flux due to fluctuating
pressure) and the turbulence diffusion of the Reynolds normal
stresses of u 02 and v 02 can be evaluated and presented in Figs. 8 and 9
for the small field of view experiment, and Figs. 10 and 11 for the
large field of view experiment, respectively. To gauge the distribution
pattern and magnitude of the diffusion terms, the corresponding
total in-plane turbulence production distributions are also shown in
Figs. 8c, 9c, 10c, and 11c as an additional source for comparison. The
total in-plane turbulence production is defined as

P � −u 0v 0
�
∂ �u
∂y

� ∂ �v
∂x

�
Shear production

�
�
−u 02 ∂ �u

∂x
− v 02 ∂ �v

∂y

�
Dilatational production

(11)

To compare the composition of the in-plane turbulence
production terms, distributions of both the shear production and
the dilatational production terms are shown in Figs. 12a and 12b,
respectively.
Comparing the diffusion distributions about the Reynolds normal

stresses u 02 shown in Figs. 8a, 8b, 10a, and 10b, it can be seen that the
turbulence diffusion of u 02 has higher magnitude than that for the
pressure diffusion in the downstream half of the shear layer except
the vicinity of the cavity trailing corner. However, this is not the case
for the Reynolds normal stresses v 02 diffusions. As shown in Fig. 9b
and especially Fig. 11b, in most of the downstream half of the shear
layer, the pressure diffusion of v 02 has comparable or even higher
magnitude than its local turbulence diffusion counterpart. The reason
for the above differences in u 02 and v 02 pressure diffusion behavior is
that the lateral gradients of p 0u 0 and p 0v 0 across the shear layer are
much greater than their streamwise derivatives as shown in Figs. 4
and 5, conforming with the general thin shear layer characteristics.

Fig. 8 Comparison of a) u-component turbulence diffusion, b) u-component pressure diffusion, and c) total turbulence kinetic energy production terms
in a turbulent shear layer over an open cavity obtained at Reynolds number of 4.0 × 104.

Fig. 9 Comparisonof a)v-component turbulencediffusion, b)v-component pressurediffusion, and c) total turbulencekinetic energyproduction terms in
a turbulent shear layer over an open cavity obtained at Reynolds number of 4.0 × 104.
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As a result, the pressure diffusion of v 02 exhibits a higher magnitude

than that of the pressure diffusion of u 02.
While it is negligible in the shear layer as shown in Figs. 8b and

10b, at places near the cavity trailing corner the u-component
pressure diffusion is significant, and its magnitude is on the same
order of those for the turbulence diffusion and the total turbulence
production terms (Figs. 8 and 10), indicating that the u-component
pressure diffusion terms cannot be neglected near the trailing corner
inRANS simulations of turbulent cavity flows.Moreover, comparing
Figs. 8b and 8c, it can be found that around the cavity trailing corner,

the distribution patterns between the pressure diffusion of u 02 and the
turbulence production terms have some similarity, but with opposite
signs. This similarity between the two distribution patterns is in
agreementwith the general understanding of the diffusionmechanism;
that is, newly generated turbulence is transported (diffused) to places

with lower concentration of newly generated turbulence, such as the
area on top of the trailing corner where the turbulence production is
negative.
Please note that peaks of the v-component pressure diffusion term

are smaller inmagnitude than thoseof the correspondingu-component
pressure diffusion. The values of these two types of pressure diffusion
terms are in opposite sign at corresponding locations surrounding the
trailing corner of the cavity. As shown in Fig. 11b, beyond the field of
view of Fig. 9b, around themid-streamwise location of the shear layer,
the v-component pressure diffusion is not negligible in comparison
with the overall production rate.
The negative turbulence production above the trailing corner of

the cavity shown in Figs. 8c and 9c, which tends to lead to the
relaminarization phenomenon [71], is a result in part due to the local
negative shear production shown Fig. 12a, and in part due to the
local negative dilatational production shown in Fig. 12b. The local

Fig. 10 Comparison of a) u-component turbulence diffusion, b) u-component pressure diffusion, and c) total turbulence kinetic energy production terms

in a turbulent shear layer flow over an open cavity obtained at Reynolds number of 3.4 × 105.

Fig. 11 Comparison of a) v-component turbulence diffusion, b) v-component pressure diffusion, and c) total turbulence kinetic energy production terms
in a turbulent shear layer flow over an open cavity obtained at Reynolds number of 3.4 × 105.
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negative shear production is a consequence of the local negative shear
stress (Fig. 3f) on top of the trailing corner. For this cavity flow,
as shown in Fig. 2f, a strong favorable pressure gradient region
occurs around the tip of the cavity trailing corner, which causes a
rapid streamwise acceleration, and consequently a strong negative
dilatational production (Fig. 12b) there. The negative total in-plane
turbulence production on top of the cavity trailing corner provides
the foundation for a positive pressure diffusion of u 02 occurring there
as shown in Fig. 8b.
The turbulence diffusion of u 02 in the shear layer appears to exhibit

a roughly three-layered distribution pattern as shown in Figs. 8a and
10a. This three-layered pattern represents the results of the lateral
turbulence transport of the fluctuation energy away from the
maximum mean shear location in the central strip of the shear layer,
where turbulence shear production is most intense, to places near the
upper and lower edges of the shear layer, primarily through the lateral
derivative term of the triple velocity correlation −∂u 02v 0∕∂y, rather
than the streamwise derivative term −∂u 03∕∂x, as revealed by the
triple velocity correlation distributions shown in Figs. 7a and 7b.
Thus, at the central strip of the shear layer, turbulence diffusion
appears to have negative values, implying an energy loss, while near
the upper and lower edges of the shear layer, turbulence diffusion
appears to have positive values, meaning gains of fluctuation energy
there. FromFig. 10a, it seems that themagnitude of this three-layered
turbulence diffusion decreases in the upstream direction, which is
consistent with the trend of a decreasing jv 0j as shown in Fig. 3c.

Clearly pressure–velocity correlations and subsequently the
pressure diffusions have substantial impact on the dynamics of
turbulence transport throughout the shear layer flow over the cavity.
However, overall the distribution patterns between the turbulence
diffusion and the pressure diffusion are considerably different,
implying that the conventional practice of modeling these transport
terms together, typically as Laplacians of the turbulent kinetic energy
as shown in Eq. (7), may not be justifiable for this turbulent shear layer
flow over a 2D open cavity. Furthermore, being of the same order of
magnitude as the turbulence production terms, the effect of pressure
diffusion on the evolution of streamwise velocity fluctuations cannot
be neglected.

E. Comparisons of Velocity–Pressure-Gradient,
Pressure–Rate-of-Strain, and Pressure Diffusion Terms

Figures 13 and 14 present the comparisons of the velocity–
pressure-gradient, pressure–rate-of-strain, and pressure diffusion
terms for the u- and v-components of Reynolds normal stress
transport equations. All the terms shown in these two figures are
calculated independently. The accuracy of the calculation is
confirmed by plugging all measured terms into Eq. (5) and checking
its validity. The common feature of all these three types of terms, for
both the u- and v-components, is that their peak magnitudes and the
highest variations occur in the area surrounding the tip of the trailing
corner of the cavity, where the highest and periodic pressure gradient
variations occur (see Figs. 2f and 3h for details about the pressure

Fig. 13 Comparison of u-component of a) velocity-pressure-gradient tensor, b) pressure–rate-of-strain tensor, and c) pressure diffusion termsmeasured
in the turbulent shear layer impinging on the trailing corner of an open cavity at Reynolds number of 4.0 × 104.

Fig. 12 Comparison of a) shear production, b) dilatational production, and c) total in-plane turbulence production terms in a turbulent shear layer over
an open cavity obtained at Reynolds number of 4.0 × 104.
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field characterization around the corner). In the shear layer at the
same locations, Π11 and R11 have values roughly one order of
magnitude higher than their counterparts of the v-component terms.
It is interesting to note that R11 keeps a relatively strong negative

value (approx. −0.05) throughout the shear layer. This value is
strengthened significantly (approx. −0.65) at the impingement point
on the trailing wall of the cavity. In contrast, R22 has a weak positive
value in the shear layer. This is consistent with the magnitude
distributions of the Reynolds normal stress u 02 and v 02 as shown in
Figs. 3b and 3d, where the streamwise u-component fluctuation is
clearly the dominant fluctuating velocity component in the shear
layer, thus rendering its negative value in R11, that is, implying the
loss of energy from u 02 to other components. Based on the above
discussion, it seems that at least in the shear layer, major loss in the
u-component fluctuation energy would be mainly absorbed by the
spanwise w-component. Thus, 3D measurement techniques such as
tomographic PIV may need to be employed in future experiment to
bring this conjecture into a closure.
It is also interesting to note that close to the impingement point, the

intercomponent fluctuation energy transfer that the v-component
absorbs significantly increases up to about 0.25, that is, about 1∕3 of
the energy loss from the u-component fluctuation, as indicated in
the R22 distribution. Considering the roughly −0.65 loss of the
u-component fluctuation energy at that place, the amount of the
fluctuation energy that thew-component absorbs at the same location
can be inferred as 0.40 according to Eq. (6), implying that strong
out-of-plane motion could occur near the impingement location. The
strong out-of-plane motionmight be a reason for the high uncertainty
levels of the pressure-related statistics at that region, as will be shown
later on in Sec. V.F.
In contrast, the intercomponent fluctuation energy transfer

completely changes its scheme shortly downstreamof the edge above
the trailing corner, where R11 takes a positive value of approximately
0.15, and R22 a negative value of approximately −0.35, meaning that
the v-component fluctuation is losing energy and the u-component
fluctuation is gaining energy. These variations are in agreement with
the local u 02 and v 02 variations on top of the trailing corner as shown
clearly in the insets of Figs. 3b and 3d, where u 02 is gaining
fluctuation energy along the streamwise direction while v 02 at the
same time is losing energy in the same region on top of the trailing
corner. This is a good example demonstrating the key role that the
pressure–rate-of-strain term plays in redistribution of energy among
components of the turbulence normal stresses.

F. Convergence and Uncertainty Analysis

As mentioned in Sec. III, for the experiments conducted at
Reynolds number of 4.0 × 104, we have processed and analyzed 14
statistically independent datasets. Denote the mean value of a
statistical quantity X for a dataset k as �Xk, where k � 1; 2; : : : ; N

Fig. 15 Convergence of �X∕j �Xjmax, that is, the ensemble average
values X for the measured statistical quantities normalized by their
corresponding maximum absolute values j �Xjmax within the field of view,

with respect to the number of ensembles N (sample size � N × 104) at
a) point A, b) point B, and c) point C indicated in Fig. 3h for experiments
conducted at Reynolds number of 4.0 × 104.

Fig. 14 Comparison of v-component of a) velocity-pressure-gradient tensor, b) pressure–rate-of-strain tensor, and c) pressure diffusion termsmeasured

in the turbulent shear layer impinging on the trailing corner of an open cavity at Reynolds number of 4.0 × 104.
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represents the sequential number of the dataset, with N
being the total number of datasets analyzed. Treating �Xk as a
random number, the ensemble mean value �X based on
averaging �Xk of N datasets of a statistical quantity X is then
defined as

�X � 1

N

XN
k�1

�Xk (12)

The standard deviation S �Xk
of an arbitrary dataset mean �Xk

can be calculated as

Fig. 16 Distribution of uncertainty magnitude t13;95SX at 95% confidence level normalized by the maximum absolute value jXjmax within the field of

view, that is, t13;95SX∕jXjmax for a)p
0u 0; b)p 0v 0; c)Π11, that is,−2u 0∂p 0∕∂x∕ρ; d)Π22, that is,−2v 0∂p 0∕∂y∕ρ; e)R11, that is,−2p 0∂u 0∕∂x∕ρ; f)R22, that is,

−2p 0∂v 0∕∂y∕ρ; g) u-component pressure diffusion, −∂�2p 0u 0∕ρ�∕∂x; h) v-component pressure diffusion, −∂�2p 0v 0∕ρ�∕∂y; i) u-component turbulence

diffusion, −∂u 03∕∂x − ∂u 02v 0∕∂y; j) v-component turbulence diffusion, −∂u 0v 02∕∂x − ∂v 03∕∂y; k) shear turbulence production, −u 0v 0�∂u∕∂y� ∂v∕∂x�;
and l) dilatational turbulence production, −u 02�∂u∕∂x� − v 02�∂v∕∂y� in a turbulent shear layer flow over a cavity at Reynolds number of 4.0 × 104.
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S �Xk
�

������������������������������������������
1

N − 1

XN
k�1

� �Xk − �X�2
vuut (13)

Subsequently, the standard deviation S �X of the ensemble
mean value �X can be obtained as

S �X � 1����
N

p S �Xk
�

�����������������������������������������������������
1

N

�
N − 1

�XN
k�1

� �Xk − �X�2
vuuuut (14)

The uncertainty range over which the possible values of the true
ensemble mean value of quantity X might lie at some probability
level (a.k.a., confidence level) P% is given as

�X � tν;PS �X�P%� (15)

where ν � N − 1 is the degree of freedom for the standard
deviation, and t is the Student’s t variable. For the small field of
view experiment, N � 14 and correspondingly, t13;95 � 2.160.
Figure 15 examines the convergence of �X∕j �Xjmax with respect to the

number of ensembles N for a variety of statistical quantities presented
in thispaper at pointsA,B, andCas indicated inFig. 3h for experiments
conducted at Reynolds number of 4.0 × 104, with j �Xjmax being the
maximum absolute value of the ensemble mean of quantity X within
the field of view. From this figure it can be seen that different statistical
quantities tend to have different rate for convergence. However, when
the number of the ensemble is increased to about 12–14, statistical
quantities, including the pressure–velocity correlation, pressure
diffusion, velocity–pressure-gradient correlation, and pressure–rate-
of-strain, all exhibit a reasonable degree of convergence. It seems that
except the v-component turbulence diffusion term and the shear
production term, most of the quantities presented in the figure tend to
converge quickly in the shear layer at location A. Ensemble mean
values for statistical quantities at locations B and C, that is, around the
cavity trailing corner, appear to have noticeable oscillations for small
ensemble sizes with N < 4. However, when N > 4, it seems that the
ensemble mean values for most quantities at those locations appear to
converge rather quickly.
Distribution of uncertainty magnitude t13;95S �X at 95% confidence

level normalized by j �Xjmax for a variety of statistical quantities is
shown in Fig. 16. Corresponding to this figure, characteristic
maximum uncertainty ranges (�t13;95S �X) of the measured statistical
quantity ensemble average values are summarized in Table 2. As
shown in Fig. 16, the uncertainty magnitudes for all the measured

quantities are heavily location dependent in the flow field. Except
the v-component turbulence diffusion −∂u 0v 02∕∂x − ∂v 03∕∂y and
the shear production −u 0v 0�∂ �u∕∂y� ∂ �v∕∂x� terms, the maximum
uncertainty magnitudes in the entire flow field for all the rest
quantities shown in Fig. 16 occur around the cavity trailing corner. As
mentioned in Sec. V.E, the high uncertainty levels of the pressure-
related statistics at the region around the trailing corner might be a
result of the strong out-of-plane motion in this region. Again this
conjecture could be verified by 3D measurement data in future
experiment.
For the v-component turbulence diffusion term and the shear

production term, the maximum uncertainty magnitudes occur in
the shear layer. Away from the viscous-dominated regions, the
uncertainty magnitude diminishes. Comparing the distributions
shown in Figs. 4, 8, 9, and 12–14, it seems that these uncertainty
distribution features are to some extent related to the distributions of
the statistical quantities themselves, indicating that high magnitudes
of turbulence quantities are roughly associated with high levels of
measurement uncertainty. As summarized in Table 2, both the
u-component turbulence diffusion term −∂u 03∕∂x − ∂u 02v 0∕∂y and
the v-component turbulence diffusion term −∂u 0v 02∕∂x − ∂v 03∕∂y
have higher peak relative uncertainty magnitudes (e.g., >20% in
shear layer) at representative locations than other statistical
quantities. The reason for this feature is that, unlike other quantities,
the peak reference values for both the u- and the v-components of the
turbulence diffusion terms are located in the shear layer, rather than
the places around the cavity trailing corner. Unlike all the pressure-
related terms and the dilatational production terms, the turbulence
diffusion terms do not have a mechanism to intensify their
magnitudes around the cavity trailing corner. Therefore, their peak
ensemble mean values occurring in the shear layer have relatively
weak magnitudes (0.059 and 0.038) comparing to the peak ensemble
mean values of other quantities (typically 0.2–0.7, an order of
magnitude higher than the former), as shown in Table 2.
The effects of out-of-planemotions on themeasurement are estimated

using the following approach: First, we use the continuity equation
∂w∕∂z � −�∂u∕∂x� ∂v∕∂y� to estimate the mean out-of-plane
velocity-gradients ∂w∕∂z and the rms values of ∂w∕∂z. It turns out that
in most places, including the shear layer, ∂w∕∂z is zero, which means
that themean flow is 2D, and implies �w � 0 in the present setting. Thus,
the contribution of spanwise motions to the streamwise momentum
equation, is w 0∂u 0∕∂z. Our data show that ∂w∕∂zjrms has roughly the
same magnitude as that of ∂u∕∂xjrms in the shear layer. Thus, assuming
that ∂u∕∂zjrms ≈ ∂w∕∂zjrms, enables us to estimate ∂u∕∂zjrms using
∂u∕∂xjrms. According to Chang et al. [72], who used LES to investigate
an incompressible open cavity shear layer flow,wrms has similar profile

Table 2 Characteristic maximum uncertainty range (�t13;95S �X) of ensemble average values for the measured statistical quantities at 95%
confidence level, normalized by their corresponding maximum absolute values (j �Xjmax) within the field of view, that is, �t13;95S �X∕j �Xjmax,

for experiments at Reynolds number of 4.0 × 104

Statistical quantity �X
�t13;95S �X∕j �Xjmax

in shear layer, %
�t13;95S �X∕j �Xjmax

in front of trailing corner, %
�t13;95S �X∕j �Xjmax

above trailing corner, % j �Xjmax within FOV

�p 0u 0�∕�ρU3
e� �5.0 �9.6 �8.0 0.0056

�p 0v 0�∕�ρU3
e� �4.1 �17.9 �5.6 0.0029

�−2u 0∂p 0∕∂x∕ρ��L∕U3
e�, i.e., Π11 �1.8 �3.0 �8.0 0.69

�−2v 0∂p 0∕∂y∕ρ��L∕U3
e�, i.e., Π22 �2.4 �9.5 �8.3 0.27

�−2p 0∂u 0∕∂x∕ρ��L∕U3
e�, i.e., R11 �1.8 �8.1 �3.3 0.69

�−2p 0∂v 0∕∂y∕ρ��L∕U3
e�, i.e., R22 �3.7 �10.8 �5.2 0.29

�−∂�2p 0u 0∕ρ�∕∂x��L∕U3
e� �1.5 �6.9 �7.7 0.75

�−∂�2p 0v 0∕ρ�∕∂y��L∕U3
e� �5.4 �18.9 �8.1 0.21

�−∂u 03∕∂x − ∂u 02v 0∕∂y��L∕U3
e� �25.1 �34.5 �45.6 0.059

�−∂u 0v 02∕∂x − ∂v 03∕∂y��L∕U3
e� �22.5 �10.8 �11.0 0.038

�−u 0v 0�∂ �u∕∂y� ∂ �v∕∂x���L∕U3
e� �7.9 �6.7 �6.5 0.138

�−u 02�∂ �u∕∂x� − v 02�∂ �v∕∂y���L∕U3
e� �0.9 �5.6 �6.7 0.232

Total in-plane production �PL∕U3
e� �5.9 �6.0 �9.5 0.211
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and magnitude as that of vrms. Combining this information, we estimate
thatwrms∂u∕∂zjrms ≈ vrms∂u∕∂xjrms. Calculations, based on four sets of
data near the trailing corner, show that vrms∂u∕∂xjrms is not more than
14% of the measured fluctuations ofDu∕Dtjrms in the shear layer near
the trailing corner, and 5% outside of the shear layer. This result is
consistent in terms of order of magnitude with the uncertainty
calculations shown in Fig. 16 and Table 2.

VI. Conclusions

Pressure–velocity correlation, pressure diffusion, pressure–rate-
of-strain, and velocity–pressure-gradient tensors have beenmeasured
in a turbulent shear layer flow over a 2D open cavity at a Reynolds
number of 4.0 × 104 based on the cavity length. The analysis is also
augmented with comparisons with experimental data obtained at a
higher Reynolds number of 3.4 × 105. To the best of our knowledge,
this is the first time that these important terms are experimentally
measured in a cavity shear layer flow. The measurement results lead
to the following conclusions:
In most of the shear layer, u 0 and p 0 are negatively correlated.

However, as the flow approaches the trailing edge of the cavity, due to
the presence of the adverse pressure gradient, p 0u 0 changes its sign,
creating a positive peak just upstream of the trailing edge.
Immediately above the trailing corner, p 0u 0 changes its sign again,
appearingwith a negative value. As for thep 0v 0 correlation,p 0 and v 0
are positively correlated in most of the shear layer. Because of the
adverse pressure gradient, p 0v 0 takes a negative value in the
impingement area of the trailing corner, and remains as negatively
correlated above the trailing corner due to flow acceleration there.
The probability density function profiles of the pressure–velocity

correlation and their corresponding skewness and kurtosis character-
istics indicate that for themajority of time in the shear layer and around
the cavity trailing corner, pressure and velocity are not correlated. It is
the less-frequent flow events that alter the shape of the PDF profiles
and subsequently determine the mean value of the pressure–velocity
correlation.
The turbulence diffusion of u 02 has higher magnitude than the

pressure diffusion of u 02 in the shear layer. Away from the corner,
pressure diffusion of u 02 is negligible. However, in most of the
downstream half of the shear layer, the pressure diffusion of v 02 has
comparable or even higher magnitude than its local turbulence
diffusion counterpart. Close to the corner, both u- and v-components
of pressure diffusion are significant, and their magnitudes are on the
same order as that of the total turbulence production term, indicating
that the pressure diffusion terms cannot be neglected near the cavity
trailing edge in RANS simulations.
The distribution patterns of the turbulence diffusion and the

pressure diffusion are considerably different. Thus the conventional
practice of modeling the transport terms all together as Laplacians of
the turbulent kinetic energy shown in Eq. (7) is not justifiable at least
for the present geometry.
The u- and the v-component pressure diffusion terms have

opposite signs at corresponding locations surrounding the trailing
corner of the cavity, where the peaks of the v-component pressure
diffusion are smaller in magnitude than those of the u-component
counterparts.
In the shear layer, Π11 and R11 have values roughly one order of

magnitude higher than their counterparts of the v-component terms.
R11 keeps a relatively strong negative value throughout the shear
layer and strengthens significantly at the impingement point. In
contrast, R22 has a small positive value in the shear layer. This trend
is consistent with themagnitudes of the Reynolds normal stresses u 02
andv 02 distributions in the flow field.According to the intercomponent
fluctuation energy balance, in the shear layer major loss in the
u-component fluctuation energy would be mainly absorbed by the
spanwise w-component fluctuation.
Close to the impingement point, the amount of the intercomponent

fluctuation energy transfer that the v-component fluctuation receives
significantly increases up to about 1/3 of the energy loss from the
u-component fluctuation. As indicated by the energy transfer
balance, the spanwise w-component fluctuation energy absorbed

from the u-component fluctuation energy loss also significantly
increases near the impingement point, implying strong out-of-plane
motion in that region.
The intercomponent fluctuation energy transfer completely changes

its distribution on top of the trailing corner, where R11 takes a positive
value and R22 a negative one, indicating that the u-component
fluctuation is gaining while the v-component fluctuation is losing
energy. This trend is again consistent with the local Reynolds normal
stress u 02 and v 02 variations.
The uncertainty magnitude distributions for the turbulence

statistical quantities investigated are location dependent. The
maximum uncertainty magnitudes in the entire flow field for all the
pressure-related terms occur around the cavity trailing corner. In
contrast, the maximum uncertainty magnitudes for the v-component
turbulence diffusion term and the shear turbulence production term
occur in the shear layer. The strong w-component out-of-plane
motion near the trailing corner might be the reason that contributes to
the high uncertainty level of pressure-related statistics there. Toverify
this conjecture, 3D measurement techniques such as tomographic
PIV may need to be employed in future experiment.
The complicated intercomponent energy transfer process described

above clearly shows the challenge (and perhaps opportunities) that
turbulencemodeling forReynolds stress transport faces in the situation
of turbulent shear layer flow over an open cavity in particular, and
separation and reattachment flow in general (e.g., impingement of a
shear flow on a surface, such as wake ingestion in a rotor passage).
Clearly the velocity–pressure-gradient tensor, the pressure diffusion
and the pressure–rate-of-strain distributions have substantial impact on
the dynamics of turbulence transport throughout the shear layer. The
complex behaviors of the pressure-related turbulence transport terms
around the impingement area are intriguing and apparently need
further investigation in future so as to better understand the flow
physics there.
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